Skip to main content
Log in

The algebraic structure of the densification and the sparsification tasks for CSPs

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

The tractability of certain CSPs for dense or sparse instances is known from the 90s. Recently, the densification and the sparsification of CSPs were formulated as computational tasks and the systematical study of their computational complexity was initiated. We approach this problem by introducing the densification operator, i.e. the closure operator that, given an instance of a CSP, outputs all constraints that are satisfied by all of its solutions. According to the Galois theory of closure operators, any such operator is related to a certain implicational system (or, a functional dependency) Σ. We are specifically interested in those classes of fixed-template CSPs, parameterized by constraint languages Γ, for which there is an implicational system Σ whose size is a polynomial in the number of variables n. We show that in the Boolean case, such implicational systems exist if and only if Γ is of bounded width. For such languages, Σ can be computed in log-space or in a logarithmic time with a polynomial number of processors. Given an implicational system Σ, the densification task is equivalent to the computation of the closure of input constraints. The sparsification task is equivalent to the computation of the minimal key.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. A quantifier-free pp-formula is a pp-formula without existential quantification.

  2. We slightly abuse the standard terminology, according to which Horn formulas are defined more generally.

References

  1. Feder, T., & Vardi, M.Y. (1993). Monotone monadic snp and constraint satisfaction. In Proceedings of the twenty-fifth annual ACM symposium on theory of computing, ser. STOC ’93. (pp. 612–622). New York: Association for Computing Machinery. [Online]. Available: https://doi.org/10.1145/167088.167245

  2. Bulatov, A.A. (2017). A dichotomy theorem for nonuniform csps. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) (pp. 319–330).

  3. Zhuk, D. (2020). A proof of the csp dichotomy conjecture. Journal of ACM, 67, 5. [Online]. Available: https://doi.org/10.1145/3402029.

    Article  MathSciNet  MATH  Google Scholar 

  4. Khanna, S., Sudan, M., Trevisan, L., & Williamson, D. P. (2001). The approximability of constraint satisfaction problems. SIAM Journal on Computing, 30(6), 1863–1920.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cooper, M.C. (2003). Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy Sets and Systems, 134(3), 311–342. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0165011402001343.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cooper, M., De Givry, S., Sanchez, M., Schiex, T., & Zytnicki, M. (2008). Virtual arc consistency for weighted csp. In Proceedings of the 23rd national conference on artificial intelligence - volume 1, ser. AAAI’08 (pp. 253–258). AAAI Press.

  7. Pesant, G. (2005). Counting solutions of csps: a structural approach. In IJCAI (pp. 260–265. [Online]. Available: http://ijcai.org/Proceedings/05/Papers/0624.pdf).

  8. Bulatov, A.A., Dyer, M., Goldberg, L.A., Jerrum, M., & Mcquillan, C. (2013). The expressibility of functions on the boolean domain, with applications to counting csps. Journal of ACM, 60(5). [Online]. Available: https://doi.org/10.1145/2528401.

  9. Bulín, J., Krokhin, A., & Opršal, J. (2019). Algebraic approach to promise constraint satisfaction. In Proceedings of the 51st annual ACM SIGACT symposium on theory of computing, ser. STOC 2019 (pp. 602–613). New York: Association for Computing Machinery. [Online]. Available: https://doi.org/10.1145/3313276.3316300.

  10. Brakensiek, J., & Guruswami, V. (2018). Promise constraint satisfaction: structure theory and a symmetric boolean dichotomy. In Proceedings of the twenty-ninth annual ACM-SIAM symposium on discrete algorithms, ser. SODA ’18 (pp. 1782–1801). USA: Society for Industrial and Applied Mathematics.

  11. Carvalho, C., Martin, B., & Zhuk, D. (2017). The complexity of quantified constraints using the algebraic formulation. In K.G. Larsen, H.L. Bodlaender, & J.-F. Raskin (Eds.) 42nd International symposium on mathematical foundations of computer science (MFCS 2017), ser. Leibniz International Proceedings in Informatics (LIPIcs), (Vol. 83 pp. 27:1–27:14). Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2017/8079.

  12. Ferguson, A., & O’Sullivan, B. (2006). Relaxations and explanations for quantified constraint satisfaction problems. In F. Benhamou (Ed.) Principles and practice of constraint programming - CP 2006 (pp. 690–694). Berlin: Springer.

  13. Bauland, M., Böhler, E., Creignou, N., Reith, S., Schnoor, H., & Vollmer, H. (2009). The complexity of problems for quantified constraints. Theory of Computing Systems, 47, 454–490.

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, J., Ding, N., Jia, Y., Frome, A., Murphy, K., Bengio, S., Li, Y., Neven, H., & Adam, H. (2014). Large-scale object classification using label relation graphs. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.) Computer Vision – ECCV 2014 (pp. 48–64). Cham: Springer International Publishing.

  15. Bishop, C.M. (2006). Pattern recognition and machine learning (information science and statistics). Berlin: Springer.

    MATH  Google Scholar 

  16. Chen, H., Jansen, B.M.P., & Pieterse, A. (2019). Best-case and worst-case sparsifiability of boolean CSPs. In C. Paul M. Pilipczuk (Eds.) 13th International symposium on parameterized and exact computation (IPEC 2018), ser. Leibniz International Proceedings in Informatics (LIPIcs). [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2019/10216, (Vol. 115 pp. 15:1–15:13). Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

  17. Lagerkvist, V., & Wahlström, M. (2020). Sparsification of sat and csp problems via tractable extensions. ACM Trans. Comput. Theory, 12(2). [Online]. Available: https://doi.org/10.1145/3389411.

  18. Hemaspaandra, E., & Schnoor, H. (2011). Minimization for generalized boolean formulas. In IJCAI International joint conference on artificial intelligence (p. 04).

  19. Maier, D. (1983). The theory of relational databases. Rockville: Computer Science Press.

    MATH  Google Scholar 

  20. Ausiello, G., D’Atri, A., & Saccà, D. (1984). Minimal representations of directed hypergraphs and their application to database design, (pp. 125–157). Vienna: Springer.

    MATH  Google Scholar 

  21. Boros, E., & Cepek, O. (1994). On the complexity of horn minimization. Rutcor Research Report 1-94. New Brunswick: Rutgers Center for Operations Research.

    Google Scholar 

  22. Hammer, P.L., & Kogan, A. (1993). Optimal compression of propositional horn knowledge bases: complexity and approximation. Artificial Intelligence, 64(1), 131–145. [Online]. Available: http://www.sciencedirect.com/science/article/pii/000437029390062G.

    Article  MathSciNet  MATH  Google Scholar 

  23. Bhattacharya, A., DasGupta, B., Mubayi, D., & Turán, G. (2010). On approximate horn formula minimization. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, & P.G. Spirakis (Eds.) Automata, languages and programming (pp. 438–450). Berlin: Springer.

  24. Chang, T. (2006). Horn formula minimization. Master’s thesis-6890. Rochester Institute of Technology. Accessed from https://scholarworks.rit.edu/theses/6890/.

  25. Caspard, N., & Monjardet, B. (2003). The lattices of closure systems, closure operators, and implicational systems on a finite set: a survey. Discrete Applied Mathematics, 127(2), 241–269. Ordinal and Symbolic Data Analysis (OSDA ’98), Univ. of Massachusetts, Amherst, Sept. 28-30, 1998. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0166218X02002093.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lucchesi, C.L., & Osborn, S.L. (1978). Candidate keys for relations. Journal of Computer and System Sciences, 17(2), 270–279. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0022000078900090.

    Article  MathSciNet  MATH  Google Scholar 

  27. Hardt, M., Srivastava, N., & Tulsiani, M. (2012). Graph densification. In Proceedings of the 3rd innovations in theoretical computer science conference, ser. ITCS ’12. [Online]. Available: https://doi.org/10.1145/2090236.2090266 (pp. 380–392). New York: Association for Computing Machinery.

  28. Escolano, F., Curado, M., Lozano, M.A., & Hancook, E.R. (2016). Dirichlet graph densifiers. In A. Robles-Kelly, M. Loog, B. Biggio, F. Escolano, & R. Wilson (Eds.) Structural, syntactic and statistical pattern recognition (pp. 185–195). Cham: Springer International Publishing.

  29. Curado, M., Escolano, F., Lozano, M.A., & Hancock, E.R. (2018). Semi-supervised graph rewiring with the dirichlet principle. In 2018 24th International Conference on Pattern Recognition (ICPR) (pp. 2172–2177).

  30. Benczúr, A.A., & Karger, D.R. (1996). Approximating s-t minimum cuts in Õ(n2) time. In Proceedings of the twenty-eighth annual ACM symposium on theory of computing, ser. STOC ’96. [Online]. Available: https://doi.org/10.1145/237814.237827(pp. 47–55). New York: Association for Computing Machinery.

  31. Batson, J., Spielman, D. A., & Srivastava, N. (2012). Twice-ramanujan sparsifiers. SIAM Journal on Computing, 41(6), 1704–1721.

    Article  MathSciNet  MATH  Google Scholar 

  32. Andoni, A., Chen, J., Krauthgamer, R., Qin, B., Woodruff, D.P., & Zhang, Q. (2016). On sketching quadratic forms. In Proceedings of the 2016 ACM conference on innovations in theoretical computer science, ser. ITCS ’16. [Online]. Available: https://doi.org/10.1145/2840728.2840753 (pp. 311–319). New York: Association for Computing Machinery.

  33. Filtser, A., & Krauthgamer, R. (2017). Sparsification of two-variable valued constraint satisfaction problems. SIAM Journal on Discrete Mathematics, 31(2), 1263–1276.

    Article  MathSciNet  MATH  Google Scholar 

  34. Butti, S., & Zivný, S. (2019). Sparsification of Binary CSPs. In R. Niedermeier C. Paul (Eds.) 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019), ser. Leibniz International Proceedings in Informatics (LIPIcs). [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2019/10256, (Vol. 126 pp. 17:1–17:8). Dagstuhl: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

  35. Fung, W.S., Hariharan, R., Harvey, N.J., & Panigrahi, D. (2011). A general framework for graph sparsification. In Proceedings of the forty-third annual ACM symposium on theory of computing, ser. STOC ’11. [Online]. Available: https://doi.org/10.1145/1993636.1993647 (pp. 71–80). New York: Association for Computing Machinery.

  36. Soma, T., & Yoshida, Y. (2019). Spectral sparsification of hypergraphs. In Proceedings of the thirtieth annual ACM-SIAM symposium on discrete algorithms, ser. SODA ’19 (pp. 2570–2581). USA: Society for Industrial and Applied Mathematics.

  37. Arora, S., Karger, D., & Karpinski, M. (1995). Polynomial time approximation schemes for dense instances of np-hard problems. In Proceedings of the twenty-seventh annual ACM symposium on theory of computing, ser. STOC ’95. [Online]. Available: https://doi.org/10.1145/225058.225140 (pp. 284–293). New York: Association for Computing Machinery.

  38. Arora, S., Frieze, A., & Kaplan, H. (1996). A new rounding procedure for the assignment problem with applications to dense graph arrangement problems. In Proceedings of 37th conference on foundations of computer science (pp. 21–30).

  39. Frieze, A., & Kannan, R. (1996). The regularity lemma and approximation schemes for dense problems. In Proceedings of 37th conference on foundations of computer science (pp. 12–20).

  40. Curado, M. (2018). Structural similarity: Applications to object recognition and clustering. Ph.D. dissertation: University of Alicante.

    Google Scholar 

  41. Bodnarchuk, V., Kaluznin, L., Kotov, V., & Romov, B. (1969). Galois theory for post algebras. Cybernetics, 5(1–2), 243–252, 531–539.

    Google Scholar 

  42. Geiger, D. (1968). Closed systems of functions and predicates. Pac. J. Math., 27(1), 95–100.

    Article  MathSciNet  MATH  Google Scholar 

  43. Takhanov, R.S. (2007). Maximum predicate descriptions of sets of mappings. Computational Mathematics and Mathematical Physics, 47(9), 1570–1581. [Online]. Available: https://doi.org/10.1134/S0965542507090175.

    Article  MathSciNet  Google Scholar 

  44. Schnoor, H., & Schnoor, I. (2008). Partial polymorphisms and constraint satisfaction problems, (pp. 229–254). Berlin: Springer. [Online]. Available: https://doi.org/10.1007/978-3-540-92800-3_9.

    MATH  Google Scholar 

  45. Böhler, E., Hemaspaandra, E., Reith, S., & Vollmer, H. (2002). Equivalence and isomorphism for boolean constraint satisfaction. In J. Bradfield (Ed.) Computer science logic (pp. 412–426). Berlin: Springer.

  46. Levene, M., & Loizou, G. (1999). A guided tour of relational databases and beyond. Berlin: Springer.

    Book  MATH  Google Scholar 

  47. Fischer, P.C., Jou, J., & Tsou, D.-M. (1983). Succinctness in dependency systems. Theoretical Computer Science, 24(3), 323–329. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0304397583900075.

    Article  MathSciNet  MATH  Google Scholar 

  48. Larose, B., Valeriote, M., & Zádori, L. (2009). Omitting types, bounded width and the ability to count. IJAC, 19, 647–668, 08.

    MathSciNet  MATH  Google Scholar 

  49. Bulatov, A. A. (2009). Bounded relational width. Simon Fraser University, Tech. Rep.

  50. Barto, L., & Kozik, M. (2009). Constraint satisfaction problems of bounded width. In 2009 50th Annual IEEE symposium on foundations of computer science (pp. 595–603).

  51. Beeri, C., & Bernstein, P.A. (1979). Computational problems related to the design of normal form relational schemas. ACM Transactions on Database Systems, 4(1), 30–59. [Online]. Available: https://doi.org/10.1145/320064.320066.

    Article  Google Scholar 

  52. Codd, E.F. (1972). Further normalization of the data base relational model. Data Base Systems, 33–64. [Online]. Available: https://ci.nii.ac.jp/naid/10003016060/en/.

  53. Benito-Picazo, F., Cordero, P., Enciso, M., & Mora, A. (2017). Reducing the search space by closure and simplification paradigms. The Journal of Supercomputing, 73(1), 75–87. [Online]. Available: https://doi.org/10.1007/s11227-016-1622-1.

    Article  Google Scholar 

  54. Sridhar, R., & Iyengar, S. S. (1990). Efficient parallel algorithms for functional dependency manipulations. In [1990] Proceedings second international symposium on databases in parallel and distributed systems (pp. 126–137).

  55. Gottlob, G. (1987). Computing covers for embedded functional dependencies. In Proceedings of the sixth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems, ser. PODS ’87. [Online]. Available: https://doi.org/10.1145/28659.28665 (pp. 58–69). New York: Association for Computing Machinery.

  56. Bodirsky, M., & Dalmau, V. (2013). Datalog and constraint satisfaction with infinite templates. Journal of Computer and System Sciences, 79 (1), 79–100. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022000012001213.

    Article  MathSciNet  MATH  Google Scholar 

  57. Larose, B., Loten, C., & Tardif, C. (2006). A characterisation of first-order constraint satisfaction problems. In 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06) (pp. 201–210).

  58. Marchenkov, S. (2000). Closed classes of boolean functions. Nauka: Fizmatlit.

    MATH  Google Scholar 

  59. Marchenkov, S. (1998). The invariants of post classes. Fundam. Prikl. Mat., 4(4), 1385–1404. [Online]. Available: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=fpm&paperid=360&option_lang=eng.

    MathSciNet  MATH  Google Scholar 

  60. Böhler, E., Reith, S., Schnoor, H., & Vollmer, H. (2005). Bases for boolean co-clones. Information Processing Letters, 96(2), 59–66.

    Article  MathSciNet  MATH  Google Scholar 

  61. Horn, A. (1951). On sentences which are true of direct unions of algebras. The Journal of Symbolic Logic, 16(1), 14–21. [Online]. Available: http://www.jstor.org/stable/2268661.

    Article  MathSciNet  MATH  Google Scholar 

  62. McKinsey, J.C.C. (1943). The decision problem for some classes of sentences without quantifiers. The Journal of Symbolic Logic, 8(2), 61–76. [Online]. Available: http://www.jstor.org/stable/2268172.

    Article  MathSciNet  MATH  Google Scholar 

  63. Dechter, R. (2003). Constraint processing. San Francisco: Morgan Kaufmann Publishers Inc.

    MATH  Google Scholar 

  64. Jeavons, P., Cohen, D., & Cooper, M.C. (1998). Constraints, consistency and closure. Artificial Intelligence, 101(1), 251–265. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0004370298000228.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rustem Takhanov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takhanov, R. The algebraic structure of the densification and the sparsification tasks for CSPs. Constraints 28, 13–44 (2023). https://doi.org/10.1007/s10601-022-09340-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-022-09340-1

Keywords

Navigation