Skip to main content
Log in

Impact of heterogeneity upon the accuracy of the Eikonal solution using the Fast Marching Method

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The Fast Marching Method (FMM) is an efficient tool for the solution of the Eikonal equation to characterize frontal propagation in heterogeneous and anisotropic media. Previous studies have applied the FMM in solving the Eikonal equation to obtain the “diffusive time of flight” (DTOF), which is used to characterize the pressure front propagation in subsurface porous media. In the DTOF (τ) based one-dimensional flow simulation, the accuracy of the pressure solution relies significantly upon the drainage volume characterization and the DTOF calculation, both of which are influenced by the reservoir heterogeneity. We study first order discretization schemes of the Eikonal equation in porous media with different levels of heterogeneity and determine the impact of the corresponding DTOF solutions upon the one-dimensional flow simulation. The local solution of the Eikonal equation is formulated based on a piecewise uniform approximation of the DTOF gradient that satisfies a causality requirement within each simplex that provides the available nodal DTOF values. A homogenization approach is developed for use within the local solution for corner point grid cells, in which effective properties are obtained across adjacent grid cells. Comparison of the computational cost and error from different discretizations of the Eikonal equation and the corresponding pressure solution with increasing heterogeneity, demonstrates the need for increased angular resolution compared to the most usual cell centered 5-point discretization. The study also demonstrates the need for more accurate solutions in the near well region, suggesting a multi-stencil approach with higher angular and linear resolution near the well, and a less accurate and less costly calculation in the bulk of the computational grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hassouna, M.S., Abdel-Hakim, A.E., Farag, A.A.: Robust robotic path planning using level sets. Paper presented at the IEEE International Conference on Image Processing, Sept. 14-14, 2005

  2. Sethian, J.A.: Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts. J Comput Phys. 169(2), 503–555 (2001). https://doi.org/10.1006/jcph.2000.6657

    Article  Google Scholar 

  3. Lelièvre, P.G., Farquharson, C.G., Hurich, C.A.: Computing first-arrival seismic traveltimes on unstructured 3-D tetrahedral grids using the Fast Marching Method. Geophys J Int. 184(2), 885–896 (2011). https://doi.org/10.1111/j.1365-246X.2010.04880.x

    Article  Google Scholar 

  4. Popovici, A.M., Sethian, J.A.: 3-D imaging using higher order fast marching traveltimes. Geophysics. 67(2), 348–663 (2002). https://doi.org/10.1190/1.1468621

    Article  Google Scholar 

  5. Rawlinson, N., Sambridge, M.: Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys J Int. 156(3), 631–647 (2004). https://doi.org/10.1111/j.1365-246X.2004.02153.x

    Article  Google Scholar 

  6. Rawlinson, N., Sambridge, M.: Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics. 69(5), 1338–1350 (2004). https://doi.org/10.1190/1.1801950

    Article  Google Scholar 

  7. Sethian, J.A., Popovici, A.M.: 3-D traveltime computation using the fast marching method. Geophysics. 64(2), 516–523 (1999). https://doi.org/10.1190/1.1444558

    Article  Google Scholar 

  8. Rawlinson, N., Sambridge, M.: The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media. Explor Geophys. 36(4), 341–350 (2005). https://doi.org/10.1071/EG05341

    Article  Google Scholar 

  9. Sukumar, N., Chopp, D.L., Moran, B.: Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng Fract Mech. 70(1), 29–48 (2003). https://doi.org/10.1016/S0013-7944(02)00032-2

    Article  Google Scholar 

  10. Karlsen, K.H., Lie, K.-A., Risebro, N.H.: A fast marching method for reservoir simulation. Computat Geosci. 4, 185–206 (2000). https://doi.org/10.1023/A:1011564017218

    Article  Google Scholar 

  11. Hassouna, M.S., Farag, A.A.: MultiStencils Fast Marching Methods: A Highly Accurate Solution to the Eikonal Equation on Cartesian Domains. IEEE Trans Pattern Anal Mach Intell. 29(9), 1563–1574 (2007). https://doi.org/10.1109/TPAMI.2007.1154

    Article  Google Scholar 

  12. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. PNAS. 93(4), 1591–1595 (1996). https://doi.org/10.1073/pnas.93.4.1591

    Article  Google Scholar 

  13. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999). https://doi.org/10.1137/S0036144598347059

    Article  Google Scholar 

  14. Sethian, J.A., Vladimirsky, A.: Fast methods for the Eikonal and related Hamilton-Jacobi equations on unstructured meshes. PNAS. 97(11), 5699–5703 (2000). https://doi.org/10.1073/pnas.090060097

    Article  Google Scholar 

  15. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations. PNAS. 98(20), 11069–11074 (2001). https://doi.org/10.1073/pnas.201222998

    Article  Google Scholar 

  16. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations: Theory and algorithms. SIAM J Numer Anal. 41(1), 325–363 (2003). https://doi.org/10.1137/S0036142901392742

    Article  Google Scholar 

  17. Alkhalifah, T., Fomel, S.: Implementing the fast marching eikonal solver: spherical versus Cartesian coordinates. Geophys Prospect. 49(2), 165–178 (2001). https://doi.org/10.1046/j.1365-2478.2001.00245.x

    Article  Google Scholar 

  18. Chacon, A., Vladimirsky, A.: Fast Two-scale Methods for Eikonal Equations. SIAM J Sci Comput. 34(2), A547–A578 (2012). https://doi.org/10.1137/10080909X

    Article  Google Scholar 

  19. Alton, K., Mitchell, I.M.: Fast Marching Methods for Stationary Hamilton–Jacobi Equations with Axis-Aligned Anisotropy. SIAM J Numer Anal. 47(1), 363–385 (2008). https://doi.org/10.1137/070680357

    Article  Google Scholar 

  20. Chopp, D.L.: Some Improvements of the Fast Marching Method. SIAM J Sci Comput. 23(1), 230–244 (2001). https://doi.org/10.1137/S106482750037617X

    Article  Google Scholar 

  21. Virieux, J., Flores-Luna, C., Gibert, D.: Asymptotic Theory for Diffusive Electromagnetic Imaging. Geophys J Int. 119(3), 857–868 (1994). https://doi.org/10.1111/j.1365-246X.1994.tb04022.x

    Article  Google Scholar 

  22. Vasco, D.W., Keers, H., Karasaki, K.: Estimation of reservoir properties using transient pressure data: An asymptotic approach. Water Resour Res. 36(12), 3447–3465 (2000). https://doi.org/10.1029/2000wr900179

    Article  Google Scholar 

  23. Xie, J., Yang, C., Gupta, N., King, M.J., Datta-Gupta, A.: Depth of Investigation and Depletion in Unconventional Reservoirs With Fast-Marching Methods. Soc Petrol Eng J. 20(4), 831–841 (2015). https://doi.org/10.2118/154532-PA

    Article  Google Scholar 

  24. Xie, J., Yang, C., Gupta, N., King, M.J., Datta-Gupta, A.: Integration of Shale-Gas-Production Data and Microseismic for Fracture and Reservoir Properties With the Fast Marching Method. Soc Petrol Eng J. 20(02), 347–359 (2015). https://doi.org/10.2118/161357-PA

    Article  Google Scholar 

  25. Zhang, Y., Yang, C., King, M.J., Datta-Gupta, A.: Fast-Marching Methods for Complex Grids and Anisotropic Permeabilities: Application to Unconventional Reservoirs. SPE-163637-MS. Paper presented at the SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, Feb. 18-20, 2013

  26. King, M.J., Wang, Z., Datta-Gupta, A.: Asymptotic Solutions of the Diffusivity Equation and Their Applications. SPE-180149-MS. Paper presented at the SPE Europec featured at the 78th EAGE Conference and Exhibition, Vienna, Austria, May 30-June 2, 2016

  27. Wang, Z., Li, C., King, M.J.: Validation and Extension of Asymptotic Solutions of Diffusivity Equation and Their Applications to Synthetic Cases. SPE-182716-MS. Paper presented at the SPE Reservoir Simulation Conference, Montgomery, Texas, USA, Feb. 20-22, 2017

  28. Zhang, Y., Bansal, N., Fujita, Y., Datta-Gupta, A., King, M.J., Sankaran, S.: From Streamlines to Fast Marching: Rapid Simulation and Performance Assessment of Shale-Gas Reservoirs by Use of Diffusive Time of Flight as a Spatial Coordinate. Soc Petrol Eng J. 21(05), 1883–1898 (2016). https://doi.org/10.2118/168997-PA

    Article  Google Scholar 

  29. Iino, A., Onishi, T., Datta-Gupta, A.: Optimizing CO2- and Field-Gas-Injection EOR in Unconventional Reservoirs Using the Fast-Marching Method. SPE Reserv Eval Eng. 23(01), 261–281 (2020). https://doi.org/10.2118/190304-PA

  30. Iino, A., Vyas, A., Huang, J., Datta-Gupta, A., Fujita, Y., Sankaran, S.: Rapid Compositional Simulation and History Matching of Shale Oil Reservoirs Using the Fast Marching Method. URTEC-2693139-MS. Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, Texas, USA, July 24-26, 2017

  31. Li, C., King, M.J.: Integration of Pressure Transient Data into Reservoir Models Using the Fast Marching Method. Soc Petrol Eng J. 25(04), 1557–1577 (2020). https://doi.org/10.2118/180148-PA

    Article  Google Scholar 

  32. Li, C., Wang, Z., King, M.J.: Transient drainage volume characterization and flow simulation in reservoir models using the fast marching method. Computat Geosci. 25, 1647–1666 (2021). https://doi.org/10.1007/s10596-021-10061-2

    Article  Google Scholar 

  33. Wang, Z., Malone, A., King, M.J.: Quantitative production analysis and EUR prediction from unconventional reservoirs using a data-driven drainage volume formulation. Computat Geosci. 24, 853–870 (2020). https://doi.org/10.1007/s10596-019-09833-8

    Article  Google Scholar 

  34. Xue, X., Yang, C., Park, J., Sharma, V.K., Datta-Gupta, A., King, M.J.: Reservoir and Fracture-Flow Characterization Using Novel Diagnostic Plots. Soc Petrol Eng J. 24(03), 1248–1269 (2019). https://doi.org/10.2118/194017-PA

    Article  Google Scholar 

  35. Xue, X., Yang, C., Sharma, V.K., Datta-Gupta, A., King, M.J.: Reservoir and Fracture Flow Characterization Using a Novel W(τ) Formulation. URTEC-2440083-MS. Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, San Antonio, Texas, USA, Aug. 1-3, 2016

  36. Lee, J.: Well Testing. In: SPE Textbook Series, vol. 1. Society of Petroleum Engineers, Richardson, Texas, USA (1982)

    Google Scholar 

  37. Datta-Gupta, A., Xie, J., Gupta, N., King, M.J., Lee, W.J.: Radius of Investigation and its Generalization to Unconventional Reservoirs. J Pet Technol. 63(07), 52–55 (2011). https://doi.org/10.2118/0711-0052-JPT

    Article  Google Scholar 

  38. Yuan, B., Zhang, Z., Clarkson, C.R.: Improved Distance-of-Investigation Model for Rate-Transient Analysis in a Heterogeneous Unconventional Reservoir With Nonstatic Properties. Soc Petrol Eng J. 24(05), 2362–2377 (2019). https://doi.org/10.2118/191698-PA

    Article  Google Scholar 

  39. Qian, J., Zhang, Y.-T., Zhao, H.-K.: A fast sweeping method for static convex Hamilton-Jacobi equations. J Sci Comput. 31, 237–271 (2007). https://doi.org/10.1007/s10915-006-9124-6

    Article  Google Scholar 

  40. Qian, J., Zhang, Y.-T., Zhao, H.-K.: Fast Sweeping Methods for Eikonal Equations on Triangular Meshes. SIAM J Numer Anal. 45(1), 83–107 (2007). https://doi.org/10.1137/050627083

    Article  Google Scholar 

  41. Fujita, Y., Datta-Gupta, A., King, M.J.: A Comprehensive Reservoir Simulator for Unconventional Reservoirs That Is Based on the Fast Marching Method and Diffusive Time of Flight. Soc Petrol Eng J. 21(06), 2276–2288 (2016). https://doi.org/10.2118/173269-PA

    Article  Google Scholar 

  42. Xue, X., Yang, C., Onishi, T., King, M.J., Datta-Gupta, A.: Modeling Hydraulically Fractured Shale Wells Using the Fast-Marching Method With Local Grid Refinements and an Embedded Discrete Fracture Model. Soc Petrol Eng J. 24(06), 2590–2608 (2019). https://doi.org/10.2118/193822-PA

    Article  Google Scholar 

  43. Yang, C., Xue, X., King, M.J., Datta-Gupta, A.: Flow Simulation of Complex Fracture Systems With Unstructured Grids Using the Fast Marching Method. URTEC-2691393-MS. Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, Texas, USA, July 24-26, 2017

  44. Liu, C.-H., Nunna, K., King, M.J.: Application of diffuse source basis functions for improved near well upscaling. Computat Geosci. 26, 823–846 (2022). https://doi.org/10.1007/s10596-021-10117-3

    Article  Google Scholar 

  45. Schlumberger: ECLIPSE Version 2017.1 Reference Manual. Schlumberger (2017)

    Google Scholar 

  46. Lake, L.W., Jensen, J.L.: A Review of Heterogeneity Measures Used in Reservoir Characterization. In Situ. 15(4), 409–439 (1991)

    Google Scholar 

  47. Christie, M.A., Blunt, M.J.: Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques. SPE Reserv Eval Eng. 4(04), 308–317 (2001). https://doi.org/10.2118/72469-PA

    Article  Google Scholar 

  48. Peaceman, D.W.: Interpretation of Well-Block Pressures in Numerical Reservoir Simulation (includes associated paper 6988). Soc Petrol Eng J. 18(03), 183–194 (1978). https://doi.org/10.2118/6893-PA

    Article  Google Scholar 

  49. Peaceman, D.W.: Interpretation of Well-Block Pressures in Numerical Reservoir Simulation With Nonsquare Grid Blocks and Anisotropic Permeability. Soc Petrol Eng J. 23(03), 531–543 (1983). https://doi.org/10.2118/10528-PA

    Article  Google Scholar 

  50. RESQML SIG: Grids. In: RESQML Technical Usage Guide for RESQML v2.0.1, pp. 95–130. Energistics (2015)

    Google Scholar 

  51. King, M.J., Ballin, P., Bennis, C., Heath, D., Hiebert, A., McKenzie, W., Rainaud, J.-F., Schey, J.: Reservoir Modeling: From RESCUE To RESQML. SPE Reserv Eval Eng. 15(02), 127–138 (2012). https://doi.org/10.2118/135280-PA

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Texas A&M University MCERI (Model Calibration and Efficient Reservoir Imaging) Joint Industry Project and the Energi Simulation foundation for their financial support. We also acknowledge the support of Schlumberger for the use of their reservoir simulation software ECLIPSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Li.

Ethics declarations

The authors acknowledge funding by the MCERI JIP at Texas A&M University and support by the Energi Simulation foundation, but otherwise affirm that there are no competing financial or non-financial interests associated with this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., King, M.J. Impact of heterogeneity upon the accuracy of the Eikonal solution using the Fast Marching Method. Comput Geosci 27, 465–484 (2023). https://doi.org/10.1007/s10596-023-10204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-023-10204-7

Keywords

MSC

Navigation