Skip to main content
Log in

Numerical modelling of brittle–ductile transition with the MUFITS simulator

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The numerical modelling of flows in geologic porous media, accounting for plastic behaviour of rocks at high temperatures and hydrofracturing at high fluid pressures, is required for a better understanding of hydrothermal and volcanic systems. The investigation of these systems is limited given the lack of reliable and available reservoir simulation software that accounts for complicated rock behaviour at elevated temperatures. In this paper, we present such software as an extension of the MUFITS reservoir simulator. We describe the mathematical model utilised for modelling the permeability changes of elastic and plastic rocks and input data formats to the simulator. We present several application examples related to the modelling of brittle–ductile transition in hydrothermal systems, in particular perturbed with the emplaced degassing magma body, and provide the corresponding simulator input data to facilitate and ease its further usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afanasyev, A.A.: Multiphase compositional modelling of CO2 injection under subcritical conditions: the impact of dissolution and phase transitions between liquid and gaseous CO2 on reservoir temperature. Int. J. Greenhouse Gas Control. 19, 731–742 (2013)

    Article  Google Scholar 

  2. Afanasyev, A., Melnik, O., Poritt, L., Schumacher, J., Sparks, S.J.: Hydrothermal alteration of kimberlite by convective flows of external water. Contrib. Mineral. Petrol. 168, 1038 (2014)

    Article  Google Scholar 

  3. Afanasyev, A.A.: Hydrodynamic modelling of petroleum reservoirs using simulator MUFITS. Energy Proc. 76, 427–435 (2015)

    Article  Google Scholar 

  4. Afanasyev, A., Costa, A., Chiodini, G.: Investigation of hydrothermal activity at Campi Flegrei caldera using 3D numerical simulations: extension to high temperature processes. J. Volcanol. Geotherm. Res. 299, 68–77 (2015)

    Article  Google Scholar 

  5. Afanasyev, A., Kempka, T., Kühn, M., Melnik, O.: Validation of the MUFITS reservoir simulator against standard CO2 storage benchmarks and history-matched models of the Ketzin pilot site. Energy Proc. 97, 395–402 (2016)

    Article  Google Scholar 

  6. Afanasyev, A., Blundy, J., Melnik, O., Sparks, S.: Formation of magmatic brine lenses via focused fluid-flow beneath volcanoes. Earth Planet Sci. Lett. 486, 119–128 (2018)

    Article  Google Scholar 

  7. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Appl Sci Publ., New York (1979)

    Google Scholar 

  8. Brownell, D.H., Garg, S.K., Pritchett, J.W.: Governing equations for geothermal reservoirs. Water Resour. Res. 13(6), 929–934 (1977)

    Article  Google Scholar 

  9. Chiodini, G., Paonita, A., Aiuppa, A., Costa, A., Caliro, S., De Martino, P., Acocella, V., Vandemeulebrouck, J.: Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat. Comm. 7, 13712 (2016)

    Article  Google Scholar 

  10. Coumou, D., Matthai, S., Geiger, S., Driesner, T.: A parallel FE-FV scheme to solve fluid flow in complex geologic media. Comput. Geosci. 34, 1697–1707 (2008)

    Article  Google Scholar 

  11. Coussy, O.: Mechanics and Physics of Porous Solids. John Wiley & Sons, Ltd, New York (2010)

    Book  Google Scholar 

  12. Cox, S.F.: The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids 10, 217–233 (2010)

    Google Scholar 

  13. Fanchi, J.R.: Principles of Applied Reservoir Simulation. Gulf Prof Publ., New York (2006)

    Google Scholar 

  14. Forchheimer, P.: Wasserbewegung durch boden. Zeit. Ver. Deutsch. Ing. 45, 1781–1788 (1901)

    Google Scholar 

  15. Fournier, R.O.: Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal enviroment. Econ. Geol. 94, 1193–1211 (1999)

    Article  Google Scholar 

  16. Garg, S.K., Pritchett, J.W.: On pressure-work, viscous dissipation and the energy balance relation for geothermal reservoirs. Adv. Water Resour. 1(1), 41–47 (1977)

    Article  Google Scholar 

  17. Geiger, S., Driesner, T., Heinrich, C.A., Matthai, S.K.: Multiphase thermohaline convection in the Earth’s crust: I. A new finite element – finite volume solution technique combined with a new equation of state for NaCl-H2O. Transp. Porous Med. 63, 399–434 (2006)

    Article  Google Scholar 

  18. Hayba, D.O., Ingebritsen, S.E.: The computer model HYDROTHERM, A three-dimensional finite-difference model to simulate ground-water flow and heat transport in the temperature range of 0 to 1,200 C: U.S. Geological Survey Water-Resources Investigations Report 94–4045, 85 p (1994)

  19. Hayba, D.O., Ingebritsen, S.E.: Multiphase groundwater flow near cooling plutons. J. Volcanol. Geotherm. Res. 102(B6), 12235–12252 (1997)

    Google Scholar 

  20. Ingebritsen, S.E., Geiger, S., Hurwitz, S., Driesner, T.: Numerical simulation of magmatic hydrothermal systems. Rev. Geophys. 48(1), RG1002 (2010)

    Article  Google Scholar 

  21. Jasim, A., Hemmings, B., Mayer, K., Scheu, B.: Groundwater flow and volcanic unrest. In: Gottsmann, J., Neuberg, J., Scheu, B (eds.) Volcanic Unrest. Advances in Volcanology. Springer, Cham (2018)

  22. Lie, K.-A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012)

    Article  Google Scholar 

  23. van Lingen, P., Sengul, M., Daniel, J.-M., Cosentino, L.: Single medium simulation of reservoirs with conductive faults and fractures. SPE 68165 (2001)

  24. Manning, C.E., Ingebritsen, S.E.: Permeability of the continental crust: implications of geothermal data and metamorphic systems. Rev. Geophys. 37, 127–150 (1999)

    Article  Google Scholar 

  25. McGuinness, M.J., Pruess, K., O’Sullivan, M., Blakeley, M.: Geothermal heat pipe stability: solution selection by upstreaming and boundary conditions. Transp. Porous Med. 11(1), 71–100 (1993)

    Article  Google Scholar 

  26. Olivella, S., Gens, A., Carrera, J., Alonso, E.E.: Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng. Comput. 13(7), 87–112 (1996)

    Article  Google Scholar 

  27. Parisio, F., Vinciguerra, S., Kolditz, O., Nagel, T.: The brittle–ductile transition in active volcanoes. Sci. Rep. 9, 143 (2019)

    Article  Google Scholar 

  28. Pedroso, C.A., Correa, A.C.F.: A new model of a pressure-dependent-conductivity hydraulic fracture in a finite reservoir: constant rate production case. SPE 38976 (1997)

  29. Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 User’s guide, version 2. Earth sciences division, lawrence berkeley national laboratory report LBNL-43134 (2012)

  30. Sillitoe, R.H.: Porphyry copper systems. Econ. Geol. 105, 3–41 (2012)

    Article  Google Scholar 

  31. Streit, J., Cox, S.F.: Fluid pressures at hypocenters of moderate to large earthquakes. J. Geophys. Res. 106(B2), 2235–2243 (2001)

    Article  Google Scholar 

  32. Vitovtova, V.M., Shmonova, V.M., Zharikova, A.V.: The porosity trend and pore sizes of the rocks in the continental crust of the earth: evidence from experimental data on permeability. Izvestiya, Physics of the Solid Earth 50(5), 593–602 (2014)

    Article  Google Scholar 

  33. Wagner, W., Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31 (2), 387–535 (2002)

    Article  Google Scholar 

  34. Watanabe, N., Numakura, T., Sakaguchi, K., Saishu, H., Okamoto, A., Ingebritsen, S.E., Tsuchiya, N.: Potentially exploitable supercritical geothermal resources in the ductile crust. Nat. Geosci. 10, 140–144 (2017)

    Article  Google Scholar 

  35. Weis, P., Driesner, T., Heinrich, C.A.: Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science 338, 1613–1616 (2012)

    Article  Google Scholar 

  36. Weis, P., Driesner, T., Coumou, D., Geiger, S.: Hydrothermal, multi-phase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison. Geofluids 14, 347–371 (2014)

    Article  Google Scholar 

  37. Weis, P.: The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems. Geofluids 15, 350–371 (2015)

    Article  Google Scholar 

  38. Zoback, M.D., Townend, J., Grollimund, B.: Steady-state failure equilibrium and deformation of intraplate lithosphere. Int. Geol. Rev. 44(5), 383–401 (2002)

    Article  Google Scholar 

Download references

Funding

Funding for this work was provided by the RF President’s Council on Grants (MD-3567.2018.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Afanasyev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 14.3 MB)

(AVI 14.3 MB)

(AVI 14.3 MB)

(AVI 14.6 MB)

(AVI 16.7 MB)

(PDF 6.65 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasyev, A. Numerical modelling of brittle–ductile transition with the MUFITS simulator. Comput Geosci 24, 1651–1662 (2020). https://doi.org/10.1007/s10596-020-09973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-020-09973-2

Keywords

Mathematics Subject Classification (2010)

Navigation