Skip to main content

Advertisement

Log in

A fully implicit and consistent finite element framework for modeling reservoir compaction with large deformation and nonlinear flow model. Part I: theory and formulation

  • Original paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Reservoir depletion results in rock failure, wellbore instability, hydrocarbon production loss, oil sand production, and ground surface subsidence. Specifically, the compaction of carbonate reservoirs with soft rocks often induces large plastic deformation due to rock pore collapse. On the other hand, following the compaction of reservoirs and failure of rock formations, the porosity and permeability of formations will, in general, decrease. These bring a challenge for reservoir simulations because of high nonlinearity of coupled geomechanics and fluid flow fields. In this work, we present a fully implicit, fully coupled, and fully consistent finite element formulation for coupled geomechanics and fluid flow problems with finite deformation and nonlinear flow models. The Pelessone smooth cap plasticity model, an important material model to capture rock compaction behavior and a challenging material model for implicit numerical formulations, is incorporated in the proposed formulation. Furthermore, a stress-dependent permeability model is taken into account in the formulation. A co-rotational framework is adopted for finite deformation, and an implicit material integrator for cap plasticity models is consistently derived. Furthermore, the coupled field equations are consistently linearized including nonlinear flow models. The physical theories, nonlinear material and flow models, and numerical formulations are the focus of part I of this work. In part II, we verify the proposed numerical framework and demonstrate the performance of our numerical formulation using several numerical examples including a field reservoir with soft rocks undergoing serious compaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mayuga, M.N.: Geology and development of California’s Giant–Wilmington oil field. In: Geology of Giant Petroleum Fields, American Association of Petroleum Geologists, Memoir, vol 14, pp 158–184 (1970)

  2. Baade, R., Chin, L., Siemers, W.: Forecasting of Ekofisk reservoir compaction and subsidence by numerical simulation. J. Petrol. Technol. 47, 723–728 (1988)

    Google Scholar 

  3. Keszthelyi, D., Dysthe, D.K., Jamtveit, B.: Compaction of North-sea chalk by pore-failure and pressure solution in a producing reservoir. Front. Phys. 4, 1–10 (2016)

    Article  Google Scholar 

  4. Bruno, M.: Subsidence-induced well failure. SPE Drill. Eng. 7, 148–152 (1992)

    Article  Google Scholar 

  5. Vudovich, A., Chin, L.Y., Morgan, D.R.: Casing deformation in Ekofisk. J. Petrol Technol. 41, 729–734 (1989)

    Article  Google Scholar 

  6. Hansen, K., Prats, M., Chan, C.: Modeling of reservoir compaction and surface subsidence at South Belridge. SPE Paper 26074. Presented at SPE Western Regional Meeting, Anchorage, Alaska 26-28 May (1993)

  7. De Rouffignac, E.P., Bondor, P.L., Karanikas, J.M., Hara, S.K.: Subsidence and well failure in the South Belridge diatomite field. SPE Paper 29626. Presented at SPE Western Regional Meeting, Bakersfield, California 8-10 March (1995)

  8. Biot, M.A.: General theory of three dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  9. Rice, J.R., Cleary, M.P.: Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 14, 227–241 (1976)

    Article  Google Scholar 

  10. Coussy, O.: Poromehcanics. Wiley, New York (2004)

    Google Scholar 

  11. Lewis, R.W., Schrefler, B.A.: The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, Chichester (1998)

    Google Scholar 

  12. Small, J.C., Booker, J.R., Davis, E.H.: Elasto-plastic consolidation of soils. Int. J. Solids Struct. 12, 431–448 (1976)

    Article  Google Scholar 

  13. Siriwardane, H.J., Desai, C.S.: Two numerical schemes for nonlinear consolidation. Int. J. Numer. Methods Engrg. 17, 405–426 (1981)

    Article  Google Scholar 

  14. Borja, R.I., Alarco, E.: A mathematical framework for finite strain elastoplastic consolidation part 1: balance laws, variational formulation, and linearization. Comput. Methods Appl. Mech. Eng. 122, 145–171 (1995)

    Article  Google Scholar 

  15. Chin, L.Y., Raghavan, R., Thomas, L.K.: Fully-coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability. SPE J. 5, 32–45 (2000)

    Article  Google Scholar 

  16. Settari, A., Walters, D.A.: Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. SPE J. 06, 334–342 (2001)

    Article  Google Scholar 

  17. Douglas, J.: Finite difference methods for two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 20, 681–696 (1981)

    Article  Google Scholar 

  18. Durlofsky, L.J.: A triangle based mixed finite element—finite volume technique for modeling two phase flow through porous media. J. Comput. Phys. 105, 252–266 (1993)

    Article  Google Scholar 

  19. Aziz, K, Settari, A.: Petroleum reservoir simulation. Applied Science Publishers Ltd., London (2007)

    Google Scholar 

  20. Arbogast, T., Dawson, C.N., Keenan, P.T., Wheeler, M.F., Yotov, I.: Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J. Sci. Comput. 19, 404–425 (1998)

    Article  Google Scholar 

  21. Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44, 2082–2106 (2006)

    Article  Google Scholar 

  22. Dean, R.H., Gai, X., Stone, C.M., Minkoff, S.E.: A comparison of techniques for coupling porous flow and geomechanics. SPE J. 11, 132–140 (2006)

    Article  Google Scholar 

  23. Gai, X., Dean, R.H., Wheeler, M.F., Liu, R.: Coupled geomechanical and reservoir modeling on parallel computers. SPE Paper 79700. Presented at SPE Reservoir Simulation Symposium, Houston, Texas 3-5 February (2003)

  24. Mikelic, A., Wang, B., Wheeler, M.F.: Numerical convergence study of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 18, 325–341 (2014)

    Article  Google Scholar 

  25. Kim, J., Tchelepi, H.A., Juanes, R.: Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics. SPE J. 16, 249–262 (2011)

    Article  Google Scholar 

  26. Sun, W., Chen, Q., Ostien, J.T.: Modeling the hydro-mechanical responses of strip and circular punch loadings on water-saturated collapsible geomaterials. Acta Geotech. 9, 903–934 (2014)

    Article  Google Scholar 

  27. Pelessone, D.: A modified formulation of the cap model. Technical report No GA-c19579 Gulf Atomics (1989)

  28. Fossum, A.F., Fredrich, J.T.: Cap plasticity models and compactive and dilatant pre-failure deformation. Presented at 4th North American Rock Mechanics Symposium, Seattle, Washington 31 July-3 August (2000)

  29. Foster, C.D., Regueiro, R.A., Fossum, A.F., Borja, R.I.: Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials. Comput. Methods Appl. Mech. Engrg. 194, 5109–5138 (2005)

    Article  Google Scholar 

  30. Motamedi, M.H., Foster, C.D.: An improved implicit numerical integration of a non-associated, three-invariant cap plasticity model with mixed isotropic-kinematic hardening for geomaterials. Int. J. Numer. Anal. Meth. Geomech. 39, 1853–1883 (2015)

    Article  Google Scholar 

  31. Chin, L., Boade, R.R., Prevost, J.H., Landa, G.H.: Numerical simulation of shear-induced compaction in the ekofisk reservoir. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30, 1193–1200 (1993)

    Article  Google Scholar 

  32. Ostensen, R.W.: The effect of stress-dependent permeability on gas production and well testing. SPE Form. Eval. 1, 227–235 (1986)

    Article  Google Scholar 

  33. Minkoff, S.E., Stone, C.M., Bryant, S., Peszynska, M., Wheeler, M.F.: Coupled fluid flow and geomechanical deformation modeling. J. Petrol. Sci. Eng. 38, 37–56 (2003)

    Article  Google Scholar 

  34. Yang, Y, Aplin, A.C.: Permeability and petrophysical properties of 30 natural mudstones. J. Geophys. Res. 1-14(2007), 112 (2007)

    Google Scholar 

  35. Gamage, K., Screaton, E., Bekins, B., Aiello, I.: Permeability-porosity relationships of subduction zone sediments. Mar. Geol. 279, 19–36 (2011)

    Article  Google Scholar 

  36. Vairogs, J., Hearn, C.L., Dareing, D.W., Rhoades, V.W.: Effect of rock stress on gas production from low-permeability reservoirs. J. Petrol. Technol. 23, 1161–1167 (1971)

    Article  Google Scholar 

  37. Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1943)

    Book  Google Scholar 

  38. Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 102, 157–165 (1952)

    Article  Google Scholar 

  39. Sandler, I.S., Dimaggio, F.L., Baladi, G.Y.: Generalized cap model for geological materials. J. Geotech. Engrg. 102, 683–699 (1976)

    Google Scholar 

  40. Simo, J.C., Ju, J.W., Pister, K.S., Taylor, R.L.: Assessment of cap model: consistent return algorithms and rate-dependent extensions. J. Eng. Mech. 1142, 191–218 (1988)

    Article  Google Scholar 

  41. Sandler, I.S., Rubin, D.: An algorithm and a modular subroutine for the cap model. Int. J. Numer. Analyt. Meth. Geomech. 3, 173–186 (1979)

    Article  Google Scholar 

  42. Hofstetter, G., Simo, J.C., Taylor, R.L.: A modified cap model: closest point solution algorithms. Comput. Struc. 462, 203–214 (1993)

    Article  Google Scholar 

  43. Desai, C.S.: Single surface yield and potential function plasticity models: a review. Comput. Geotech. 7, 319–335 (1989)

    Article  Google Scholar 

  44. Desai, C.S., Salami, M.: Constitutive model for rocks. J. Geotech. Engrg. 113, 407–423 (1987)

    Article  Google Scholar 

  45. Lade, P.V., Kim, M.K.: Single hardening constitutive model for frictional materials. Comput. Geotech. 6, 13–29 (1988)

    Article  Google Scholar 

  46. de Boer, R., Dresenkamp, H.T.: Constitutive equations for concrete in failure state. J. Engrg. Mech. 115, 1591–1608 (1989)

    Article  Google Scholar 

  47. Ehlers, W.: A single-surface yield function for geomaterials. Arch. Appl. Mech. 65, 246–259 (1995)

    Article  Google Scholar 

  48. Bigoni, D., Piccolroaz, A.: Yield criteria for quasibrittle and frictional materials. Int. J. Solids Struct. 41, 2855–2878 (2004)

    Article  Google Scholar 

  49. Aubertin, M., Li, L.: A porosity-dependent inelastic criterion for engineering materials. Int. J. Plast. 20, 2179–2208 (2004)

    Article  Google Scholar 

  50. Khoei, A., Azami, A.: A single cone-cap plasticity with an isotropic hardening rule for powder materials. Int. J. Mech. Sci. 47, 94–109 (2005)

    Article  Google Scholar 

  51. Bier, W., Hartmann, S.: A finite strain constitutive model for metal powder compaction using a unique and convex single surface yield function. Eur. J. Mech. A-Solid 25, 1009–1030 (2006)

    Article  Google Scholar 

  52. Lode, W.: Versuche über den Einflußder mittleren Hauptspannung auf das Fließen der Metalle Eisen Kupfer und Nickel. Z. Physik. 913-939, 36 (1926)

    Google Scholar 

  53. Brannon, R.M., Fossum, A.F., Strack, O.E.: Kayenta: Theory and User’s Guide (No. SAND2009-2282). Sandia National Laboratories, Albuquerque (2009)

    Book  Google Scholar 

  54. Stevenson, D.L.: Salem limestone oil and gas production in the Keenville field, Wayne County, Illinois: Illinois State Geological Survey. Department of Registration and Education, Illinois (1978)

  55. Oden, J.T.: Finite Elements of Nonlinear Continua. McGraw-Hill, New York (1972)

    Google Scholar 

  56. Simo, J.C., Hughes, T.J.: Computational Inelasticity. Springer, New York (1998)

    Google Scholar 

  57. Liu, R., Wheeler, M.F., Dawson, C.N., Dean, R.: Modeling of convection-dominated thermoporomechanics problems using incomplete interior penalty Galerkin method. Comput. Methods Appl. Mech. Eng. 198, 912–919 (2009)

    Article  Google Scholar 

  58. Na, S., Sun, W.: Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range. Comput. Methods Appl. Mech. Eng. 318, 667– 700 (2017)

    Article  Google Scholar 

  59. Holzapfel, G.A.: Nonlinear Solid Mechanics, a Continuum Approach for Engineering. Wiley, Chichester (2000)

    Google Scholar 

  60. Liu, R., Wheeler, M.F., Yotov, I.: On the spatial formulation of discontinuous Galerkin methods for finite elastoplasticity. Comput. Methods Appl. Mech. Eng. 253, 219–236 (2013)

    Article  Google Scholar 

  61. Schwer, L.E., Murray, Y.D.: A three-invariant smooth cap model with mixed hardening. Int. J. Numer. Analyt. Meth. Geomech. 18, 657–688 (1994)

    Article  Google Scholar 

  62. Swan, C.C., Seo, Y.K.: Limit state analysis of earthen slopes using dual continuum/FEM approaches. Int. J. Numer. Analyt. Meth. Geomech. 23, 1359–1371 (1999)

    Article  Google Scholar 

  63. Xia, K., Masud, A: A new stabilized finite-element method embedded with a cap model for the analysis of granular materials. J. Eng. Mech. 1323, 250–259 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijie Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, R. A fully implicit and consistent finite element framework for modeling reservoir compaction with large deformation and nonlinear flow model. Part I: theory and formulation. Comput Geosci 22, 623–637 (2018). https://doi.org/10.1007/s10596-017-9715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9715-3

Keywords

Navigation