Skip to main content
Log in

Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We consider an iterative scheme for solving a coupled geomechanics and flow problem in a fractured poroelastic medium. The fractures are treated as possibly non-planar interfaces. Our iterative scheme is an adaptation due to the presence of fractures of a classical fixed stress-splitting scheme. We prove that the iterative scheme is a contraction in an appropriate norm. Moreover, the solution converges to the unique weak solution of the coupled problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alboin, C., Jaffré, J., Roberts, J.E., Serres, C.: Modeling fractures as interfaces for flow and transport in porous media. In: Z. Chen and R. E. Ewing, editors, Fluid flow and transport in porous media: mathematical and numerical treatment, Contemporary mathematics, volume 295, pages 13–24. American Mathematical Society (2002)

  2. Biot, M.A.: Consolidation settlement under a rectangular load distribution. J. Appl. Phys. 12(5), 426–430 (1941)

    Article  Google Scholar 

  3. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag 3rd edition (2008)

  5. Bukač, M., Yotov, I., Zakerzadeh, R., Zunino, P.: Partitioning strategies for the interaction of a fluid with a poroelastic material based on Nitsche’s coupling approach. Comput. Methods Appl. Mech. Eng. 292, 138–170 (2015)

    Article  Google Scholar 

  6. Castonguay, S.T., Mear, M.E., Dean, R.H., Schmidt, J.H.: Predictions of the growth of multiple interacting hydraulic fractures in three dimensions. Soc. Petrol. Eng. (2013). SPE 166259-MS

  7. Chin, L.Y., Raghaven, R., Thomas, L.K.: Fully-coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability. In: 1998 SPE International Conference and Exhibition, Beijing, China Nov, pp 2–6 (1998)

  8. Chin, L.Y., Thomas, L.K., Sylte, J.E., Pierson, R.G.: Iterative coupled analysis of geomechanics and fluid flow for rock compaction in reservoir simulation. Oil and Gas Science and Technology 57(5), 485–497 (2002)

    Article  Google Scholar 

  9. Coussy, O.: A general theory of thermoporoelastoplasticity for saturated porous materials. Transp. Porous Media 4, 281–293 (1989)

    Article  Google Scholar 

  10. Dean, R.H., Schmidt, J.H.: Hydraulic-fracture predictions with a fully coupled geomechanical reservoir simulator. SPE J., 707–714 (2009)

  11. Delshad, M., Hosseini, S.A., Kong, X., Tavakoli, R., Wheeler, M.F.: Modeling and simulation of carbon sequestration at Cranfield incorporating new physical models. Int. J. Greenhouse Gas Control 18, 463–473 (2013)

    Article  Google Scholar 

  12. Fung, L.S.K., Buchanan, L., Wan, R.G.: Coupled geomechanical-thermal simulation for deforming heavy-oil reservoirs. J. Can. Pet. Tech. 33(4) (1994)

  13. Gai, X., Dean, R.H., Wheeler, M.F., Liu, R.: Coupled geomechanical and reservoir modeling on parallel computers. In: The SPE Reservoir Simulation Symposium, Houston, Texas Feb, pp 3–5 (2003)

  14. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. trans. Numer Anal. 26, 350–384 (2007)

    Google Scholar 

  15. Girault, V., Pencheva, G.V., Wheeler, M.F., Wildey, T.M.: Domain decomposition for poroelasticity and elasticity with DG jumps and mortars. Math. Models Methods Appl. Sci. 21(1), 169–213 (2011)

    Article  Google Scholar 

  16. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986)

    Book  Google Scholar 

  17. Girault, V., Wheeler, M.F., Ganis, B., Mear, M.E.: A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25(4), 587–645 (2015)

    Article  Google Scholar 

  18. Kim, J., Tchelepi, H.A., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits. Comput. Methods Appl. Mech. Engrg. 200(23-24), 2094–2116 (2011)

    Article  Google Scholar 

  19. Kim, J., Tchelepi, H.A., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Engrg. 200(13-16), 1591–1606 (2011)

    Article  Google Scholar 

  20. Lewis, R.W., Schrefler, B.A.: the Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edition. Wiley, New York (1998)

    Google Scholar 

  21. Lions, J. -L., Magenes, E.: non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer-Verlag, New York (1972)

    Book  Google Scholar 

  22. Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)

    Article  Google Scholar 

  23. Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and mechanics. Comput. Geosci. 17(3), 455–461 (2013)

    Article  Google Scholar 

  24. Mikelić, A., Wheeler, M.F., Wick, T.: A Phase-Field Approach to the Fluid-Filled Fracture Surrounded by a Poro-Elastic Medium ICES Report 13-15, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin Texas (2013)

  25. Mikelić, A., Wheeler, M.F., Wick, T.: A quasi-static phase-field approach to the fluid-filled fracture. Nonlinearity 28(5), 1371–1399 (2015)

    Article  Google Scholar 

  26. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)

    Article  Google Scholar 

  27. Pop, I.S., Radu, F., Knabner, P.: Mixed finite elements for the Richards’ equation. Linearization procedure. J. Comput. Appl. Math. 168(1-2), 365–373 (2004)

    Article  Google Scholar 

  28. Radu, F.A., Nordbotten, J.M., Pop, I.S., Kumar, K.: A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math. 289, 134–141 (2015)

    Article  Google Scholar 

  29. Settari, A., Mourits, F.M.: Coupling of geomechanics and reservoir simulation models. In: Siriwardane and Zema, editors, Comp. Methods and Advances in Geomech., pages 2151–2158, Balkema, Rotterdam (1994)

  30. Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251(1), 310–340 (2000)

    Article  Google Scholar 

  31. Small, J.C., Booker, J.R., Davis, E.H.: Elasto-plastic consolidation of soil. Int. J. Solids Struct. 12(6), 431–448 (1976)

    Article  Google Scholar 

  32. von Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1943)

    Book  Google Scholar 

  33. Wick, T., Singh, G., Wheeler, M.F.: Pressurized fracture propagation using a phase-field approach coupled to a reservoir simulator. In: SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas. Society of Petroleum Engineers, SPE 168597-MS submitted (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundan Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girault, V., Kumar, K. & Wheeler, M.F. Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Comput Geosci 20, 997–1011 (2016). https://doi.org/10.1007/s10596-016-9573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9573-4

Keywords

Navigation