Skip to main content
Log in

Highly gravity-driven flow of a NAPL in water-saturated porous media using the discontinuous Galerkin finite-element method with a generalised Godunov scheme

Highly gravity-driven flow of a NAPL in water-saturated porous media

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we develop an implementation of gravity effects within a Global Pressure formulation in a numerical scheme based on the implicit pressure explicit saturation (IMPES) approach. We use the Discontinuous Galerkin Finite-Element Method (DGFEM) combined with a generalised Godunov scheme to model an immiscible two-phase flow with predominant gravity effects. The saturation profile of a displacing non-aqueous phase liquid (NAPL) in an initially water-saturated porous medium depends strongly on the ratio between the total specific discharge and the density difference between the NAPL and water. We discuss the solution of the nonlinear Buckley-Leverett equation for the general case in which the flux function is non-monotonic. Using a detailed functional analysis of the characteristics of the given hyperbolic equation, three limit cases are identified as significant for modelling the shock and rarefaction regions. The derived maximum (or entry) and front saturations of NAPL are functions of the viscosity ratio M and the gravity number G. We first test the developed numerical model in the case of a one-dimensional highly gravity-driven flow of NAPL within a homogeneous porous medium. The numerically calculated NAPL entry and front saturations of NAPL agree well with the theoretical values. Furthermore, the numerical diffusion of the shock front is lower than that of the calculated using a first-order Finite Volume method, which is generally used in reservoir engineering because of its robustness. Finally, we apply the developed DGFEM scheme to a 2D heterogeneous porous medium and analyse its capability of modelling the non-uniform saturation field using spatial moment analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amaziane, B., Jurak, M., žgaljic Keko, A.: An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media. J. Differ. Equ. 250, 1685–1718 (2011)

    Article  Google Scholar 

  2. Amaziane, B., Jurak, M., žgaljic Keko, A.: Numerical simulations of water-gas flow in heterogeneous porous media with discontinuous capillary pressures by the concept of global pressure. J. Comput. Appl. Math. 236, 4227–4244 (2012)

    Article  Google Scholar 

  3. Amaziane, B., Jurak, M., žgaljic Keko, A.: Modeling and numerical simulations of immiscible compressible two-phase flow in porous media by the concept of global pressure. Transp. Porous Media 84, 133–152 (2010)

    Article  Google Scholar 

  4. Andreianov, B., Cancès, C.: Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks’ medium. Comput. Geosci. 17, 551–572 (2013)

    Article  Google Scholar 

  5. Aris, R.: On the dispersion of a solute in a fluid flowing through a tube. In: Proceedings of The Royal Society A: Mathematical. Physical and Engineering Sciences, p 235 (1956)

  6. Binning, P., Celia, M.A.: Practical implementation of the fractional flow approach to multi-phase flow simulation. Adv. Water Resour. 22(5), 461–478 (2010)

    Article  Google Scholar 

  7. Buckley, S.E., Leverett., M.C.: Mecanism of fluid displacement in sands. Am. Inst. Min. Metall. Pet. Eng. 146, 107–116 (1942)

    Google Scholar 

  8. Chavent, G., Jaffré, J.: Mathematical models and finite elements for reservoir simulation. Elsevier Science publishers B.V. (1986)

  9. Chavent, G.: A fully equivalent global pressure formulation for three-phases compressible flows. Applicable Analysis. An International Journal 88, 1527–1541 (2009)

    Article  Google Scholar 

  10. Chen, Z., Ewing, R.: Comparison of various formulations of three-phase flow in porous media. J. Comput. Phys. 132, 362–373 (1997)

    Article  Google Scholar 

  11. Chen, Z.: Finite element methods and their applications. Springer-Verlag, Scientific Computation, Berlin (2005)

    Google Scholar 

  12. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin methods. Lect. Notes Comput. Sci. Eng., Springer, Berlin 11, 3–50 (2000)

    Article  Google Scholar 

  13. di Chiara Roupert, R.: Développement d’un code de calcul multiphasique multiconstituants, PhD thesis, Université de Strasbourg (2009)

  14. di Chiara Roupert, R., Chavent, G., Schäfer, G.: Three-phase compressible flow in porous media: total differential compatible interpolation of relative permeabilities. J. Comput. Phys. 229, 4762–4780 (2010)

    Article  Google Scholar 

  15. El Soueidy, C.P.: Eléments finis discontinus multi-domaines en temps pour la modélisation du transport en milieu poreux saturé, PhD thesis, Université de Strasbourg (2008)

  16. Ern, A., Mozolevski, I., Schuh, L.: Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comp. Meth. Appl. Mech. Eng. 199(23–24), 1491–1501 (2010)

    Article  Google Scholar 

  17. Ewing, R.: Mathematical modeling and simulation for fluid flow in porous media. Rossiiskaya Akademiya Nauk. Matematicheskoe Modelirovanie 13, 117–127 (2001)

    Google Scholar 

  18. Ewing, R., Chen, Z., Espedal, M.: Multiphase Flow Simulation With Various Boundary Conditions. X International Conference on Computational Methods in Water Resources, Heidelberg (1994)

  19. Ewing, R.P., Berkowitz, B.: A generalized growth model for simulating initial migration of dense non-aqueous phase liquids. Water Resour. Res., 611–622 (1998)

  20. Eymard, R., Gallouët, T., Ghilani, M., Herbin, R.: Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18, 563–594 (1998)

    Article  Google Scholar 

  21. Frette, O.I., Måløy, K.J., Schmittbuhl, J., Hansen, J.: Immiscible displacement of viscosity-matched fluids in two-dimensional porous media. Phys. Rev. 3, 2969–2975 (1997)

    Google Scholar 

  22. Godlewski, E., Raviart, P.-A.: Hyperbolic systems of conservation laws (3/4), Ellipses. Paris (1991)

  23. Helmig, R.: Multiphase Flow and transport Processes in the subsurface. Springer (1997)

  24. Hoteit, H., Firoozabadi, A.: Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fratured media. Resources Research, p 41 (2005)

  25. Hoteit, H., Firoozabadi, A.: Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures, Advances in Water Resources, p 31 (2008)

  26. Huber, R., Helmig, R.: Multiphase flow in heterogeneous porous media: a classical finite element method versus an implicit pressure–explicit saturation-based mixed finite element–finite volume approach. Int. J. Numer. Methods Fluids 29, 899–920 (1999)

    Article  Google Scholar 

  27. Kaasschieter, E.F.: Solving the Buckley-Leverett equation with gravity in a heterogeneous porous medium. Comput. Geosci. 3, 23–48 (1999)

    Article  Google Scholar 

  28. Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)

    Google Scholar 

  29. Langtangen, H.P., Tveiko, A.: Instability of Buckley-Leverett Flow in a Hetegogeneous Medium. Transport in Porous Media 9, 165–185 (1992)

    Article  Google Scholar 

  30. Lenormand, R., Zarcone, C.: Capillary fingering: Percolation and fractal dimension. J. Porous Media 4, 599–612 (1989)

    Google Scholar 

  31. Leveque, R.J.: Numerical methods for conservation laws. Basel Boston, Birkhäuser Verlag (1990)

    Book  Google Scholar 

  32. Leveque, R.J.: Finite volume methods for hyperbolic problems, Cambridge University Press, Cambridge Texts in Applied Mathematics. Cambridge (2002)

  33. Løvoll, G., Jankov, M., Måløy, K.J., Toussaint, R., Schmittbuhl, J., Schäfer, G., Méheust, Y.: Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Transp. Porous Media 86, 305–324 (2011)

    Article  Google Scholar 

  34. Nayagum, D.: Simulation numérique, de la pollution du sous-sol par les produits pétroliers et dérivés: application au cas d’un écoulement diphasique monodimensionnel, PhD thesis, Université de Strasbourg (2001)

  35. Nayagum, D., Schäfer, G., Mosé, R.: Modelling two-phase incompressible flow in porous media using mixed hybrid and discontinuous finite elements. Comput. Geosci. 8, 49–73 (2004)

    Article  Google Scholar 

  36. Nsir, K., Schäfer, G.: A pore-throat model based on grain-size distribution to quantify gravity-dominated DNAPL instabilities in a water-saturated homogeneous porous medium. C. R. Geosci. 342, 881–891 (2010)

    Article  Google Scholar 

  37. Nsir, K., Schäfer, G., di Chiara, R.R., Razakarisoa, O., Toussaint, R.: Laboratory experiment on DNAPL gravity fingering in water-saturated porous media. Int. J. Multiphase Flow, 83–92 (2012)

  38. Ounaies, S., Schäfer, G., Trémolières, M.: Quantification of vertical water fluxes in the vadose zone using particle-size distribution and pedology-based approaches to model soil heterogeneities. Hydrol. Process. 27, 2306–2324 (2013)

    Article  Google Scholar 

  39. Putti, M., Yeh, W.W.-G., Mulder, A.: W. A triangular finite volume approach with high-resolution upwind terms for the solution of groundwater transport equations. Water Resour. Res. 26(12), 2865–2880 (1990)

    Google Scholar 

  40. Proskurowski, W.: A Note on Solving the Buckley-Leverett Equation in the Presence of Gravity. J. Comput. Phys. 41, 136–141 (1981)

    Article  Google Scholar 

  41. Riaz, A., Tchelepi, H.A.: Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation. Phys. Fluids 16, 4727–4737 (2004)

    Article  Google Scholar 

  42. Riaz, A., Tchelepi, H.A.: Influence of Relative Permeability on the Stability Characteristics of Immiscible Flow in Porous Media. Transp. Porous Media 64, 315–338 (2006)

    Article  Google Scholar 

  43. Schneider, L.: Développement d’un modèle numérique pour l’écoulement triphasique de fluides incompressibles, PhD thesis, Université de Strasbourg (2015)

  44. Riaz, A., Tchelepi, H.: Stability of two-phase vertical flow in homogeneous porous media. Phys. Fluids, vol. 19 (2007)

  45. Eleuterio, F., Toro, R.S.: Numerical Methods for Fluid Dynamics. a practical introduction. Springer (2009)

  46. Toussaint, R., Løvoll, G., Méheust, Y., Måløy, K.J., Schmittbuhl, J.: Influence of pore-scale disorder on viscous fingering during drainage. Europhys. Lett., 583–589 (2005)

  47. Turner, A.: Behavior of dense non-aqueous phase liquids at soil interfaces of heterogeneous formations: Experimental methods and physical model testing. Numerical Computation of Multiphase Flows in Porous Media. Colorado School of Mines, Golden, Colorado (2004)

    Google Scholar 

  48. Van Duijn, C.J., Peletier, L.A., Pop, I.S.: A new class of entropy solutions of the Buckley-Leverett equation. SIAM J. Math. Anal. 39, 507–536 (2007)

    Article  Google Scholar 

  49. Yeh, T.-C.J., Ye, M., Khaleel, R.: Estimation of effective unsaturated hydrolic conductivity tensor using spatial moments of observed moisture plume. Water Resources Research, vol. 41 (2005)

  50. El Soueidy, Ch.P., Younes, A., Ackerer, P.: Solving the advection-diffusion equation on unstructured meshes with discontinuous/mixed finite elements and a local time stepping procedure. Int. J. Numer. Methods Eng. 79, 1068–1093 (2009)

    Article  Google Scholar 

  51. Younes, A., Fahs, M., Ackerer, P.: An efficient geometric approach to solve the slope limiting problem with the discontinuous Galerkin method on unstructured triangles. Int. J. Numer. Methods Biomed. Eng. 26, 1824–1835 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauriane Schneider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, L., di Chiara Roupert, R., Schäfer, G. et al. Highly gravity-driven flow of a NAPL in water-saturated porous media using the discontinuous Galerkin finite-element method with a generalised Godunov scheme. Comput Geosci 19, 855–876 (2015). https://doi.org/10.1007/s10596-015-9494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9494-7

Keywords

Mathematics Subject Classification (2010)

Navigation