Skip to main content
Log in

A coarse-scale compositional model

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In subsurface flow modeling, compositional simulation is often required to model complex recovery processes, such as gas/CO 2 injection. However, compositional simulation on fine-scale geological models is still computationally expensive and even prohibitive. Most existing upscaling techniques focus on black-oil models. In this paper, we present a general framework to upscale two-phase multicomponent flow in compositional simulation. Unlike previous studies, our approach explicitly considers the upscaling of flow and thermodynamics. In the flow part, we introduce a new set of upscaled flow functions that account for the effects of compressibility. This is often ignored in the upscaling of black-oil models. In the upscaling of thermodynamics, we show that the oil and gas phases within a coarse block are not at chemical equilibrium. This non-equilibrium behavior is modeled by upscaled thermodynamic functions, which measure the difference between component fugacities among the oil and gas phases. We apply the approach to various gas injection problems with different compositional features, permeability heterogeneity, and coarsening ratios. It is shown that the proposed method accurately reproduces the averaged fine-scale solutions, such as component overall compositions, gas saturation, and density solutions in the compositional flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aziz, K., Wong, T.: Considerations in the development of multipurpose reservoir simulation models. In Proceedings of the 1st and 2nd International Forum on Reservoir Simulation, Alpbach, Austria (1989)

  2. Ballin, P., Clifford, P., Christie, M.: Cupiagua, modeling of a complex fractured reservoir using compositional upscaling. SPE Reserv. Eval. & Eng. 5, 488–498 (2002)

    Article  Google Scholar 

  3. Barker, J., Fayers, F.: Transport coefficients for compositional simulation with coarse grids in heterogeneous media. SPE Adv. Technol. Ser. 2, 103–112 (1994)

    Article  Google Scholar 

  4. Barker, J.W., Thibeau, S.: A critical review of the use of pseudorelative permeabilities for upscaling. SPE Reserv. Eval. & Eng. 12, 138–143 (1997)

    Article  Google Scholar 

  5. Cao, H.: Development of techniques for general purpose simulation. Ph.D. thesis. Stanford University, California (2002)

    Google Scholar 

  6. Chen, Y., Durlofsky, L.J.: Adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transp. Porous Media 62, 157–185 (2006a)

    Article  Google Scholar 

  7. Chen, Y., Durlofsky, L.J.: Efficient incorporation of global effects in upscaled models of two-phase flow and transport in heterogeneous formations. Multiscale Model. Simul. 5, 445–475 (2006b)

    Article  Google Scholar 

  8. Chen, Y., Li, Y.: Local-global two-phase upscaling of flow and transport in heterogeneous formations. Multiscale Model. Simul. 8, 125–153 (2009)

    Article  Google Scholar 

  9. Chen, Y., Durlofsky, L.J., Gerritsen, M., Wen, X.H.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 104–1060 (2003)

    Google Scholar 

  10. Chen, Y., Li, Y., Efendiev, Y.: Time-of-flight(tof)-based two-phase upscaling for subsurface flow and transport. Resources Adv. Water Resour. 54, 119–132 (2013)

    Article  Google Scholar 

  11. Christie, M.A.: Upscaling for reservoir simulation. J. Pet. Technol. 48, 1004–1010 (1996)

    Article  Google Scholar 

  12. Christie, M.A., Blunt, M.J.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv. Eval.& Eng. 4, 308–317 (2001)

    Article  Google Scholar 

  13. Christie, M.A., Clifford, P.J.: Fast procedure for upscaling compositional simulation. SPE J. 3, 272–278 (1998)

    Article  Google Scholar 

  14. Coats, K.: An equation of state compositional model. SPE J. 20 (5), 363–376 (1980)

    Article  Google Scholar 

  15. Collins, D.A., Nghiem, L.X., Li, Y.-K., Grabonstotter, J.E.: An efficient approach to adaptive-implicit compositional simulation with an equation of state. SPE Reserv. Eng. 7 (2), 259–264 (1992)

    Article  Google Scholar 

  16. Darman, N.H., Pickup, G.E., Sorbie, K.S.: A comparison of two-phase dynamic upscaling methods based on fluid potentials. Comput. Geosci. 6, 5–27 (2002)

    Article  Google Scholar 

  17. Deutsch, C.V., Journel, A.G.: GSLIB: Geostatistical Software Library and User’s Guide, 2nd edition. Oxford University Press, New York (1998)

    Google Scholar 

  18. Durlofsky, L.J.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27, 699–708 (1991)

    Article  Google Scholar 

  19. Durlofsky, L.J., Chen, Y.: Uncertainty quantification for subsurface flow problems using coarse-scale models. In: Graham, I.G., Hou, T.Y., Lakkis, O., Scheichl, R. (eds.) In numerical analysis of multiscale problems, lecture notes in computational science and engineering, Vol. 83, pp 163–202. Springer (2012)

  20. Efendiev, Y.R., Durlofsky, L.J.: A generalized convection-diffusion model for subgrid transport in porous media. Multiscale Model. Simul. 1, 504–526 (2003)

    Article  Google Scholar 

  21. Farmer, C.L.: Upscaling: a review. Int. J. Numer. Methods Fluids 40, 63–78 (2002)

    Article  Google Scholar 

  22. Fayers, F., Barker, J., Newley, T. In: P.R. King (ed.) : Effects of heterogeneities on phase behavior in enhanced oil recovery. The Mathematics of Oil Recovery, pp 115–150. Clarendon Press, Oxford, U.K. (1992)

  23. Hiraiwa, T., Suzuki, K.: New method of incorporating immobile and nonvaporizing residual oil saturation into compositional reservoir simulation of gasflooding. SPE Reserv. Eval. & Eng. 10, 60–65 (2007)

    Article  Google Scholar 

  24. Iranshahr, A., Voskov, D., Tchelepi, H.: Tie-simplex parameterization for eos-based thermal compositional simulation. SPE J. 15 (2), 545–556 (2010)

    Article  Google Scholar 

  25. Iranshahr, A., Voskov, D., Tchelepi, H.: Gibbs energy analysis: Compositional tie-simplex space. Fluid Phase Equilib. 321, 49–58 (2012)

    Article  Google Scholar 

  26. Michelsen, M.: The isothermal flash problem. Part I. stability. Fluid Phase Equilib. 9, 1–19 (1982a)

    Article  Google Scholar 

  27. Michelsen, M.: The isothermal flash problem. Part II. phase-split calculation. Fluid Phase Equilib. 9, 21–40 (1982b)

    Article  Google Scholar 

  28. Orr, F.M.J.: Theory of gas Injection processes. Tie-Line publications. Denmark, Copenhagen (2007)

    Google Scholar 

  29. Pan, H., Tchelepi, H.: Compositional flow simulation using reduced-variables and stability-analysis bypassing. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA (2011)

  30. Peng, D., Robinson, D.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)

    Article  Google Scholar 

  31. Pickup, G.E., Ringrose, P.S., Jensen, J.L., Sorbie, K.S.: Permeability tensors for sedimentary structures. Math. Geol. 26, 227–250 (1994)

    Article  Google Scholar 

  32. Pickup, G.E., Ringrose, P.S., Sharif, A.: Steady-state upscaling from lamina-scale to full-field model. SPE J. 5, 208–217 (2000)

    Article  Google Scholar 

  33. Rasmussen, C.P., Krejbjerg, K., Michelsen, M.L., Bjurstrom, K.E.: Increasing the computational speed of flash calculations with applications for compositional, transient simulations. SPE Reserv. Eval. & Eng. 9 (1), 32–38 (2006)

    Article  Google Scholar 

  34. Salehi, A., Voskov, D.V., Tchelepi, H.A.: Thermodynamically consistent transport coefficients for upscaling of compositional processes. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA (2013)

  35. Voskov, D., Tchelepi, H.: Compositional space parameterization: Multicontact miscible displacements and extension to multiple phases. SPE J. 14 (3), 441–449 (2009a)

    Article  Google Scholar 

  36. Voskov, D., Tchelepi, H.: Compositional space parameterization: theory and application for immiscible displacements. SPE J. 14 (3), 431–440 (2009b)

    Article  Google Scholar 

  37. Voskov, D., Tchelepi, H.: Comparison of nonlinear formulations for two-phase multi-component eos based simulation. J. Pet. Sci. Eng. 82-83, 101–111 (2012)

    Article  Google Scholar 

  38. Wallstrom, T.C., Hou, S., Christie, M.A., Durlofsky, L.J., Sharp, D.H., Zou, Q.: Application of effective flux boundary conditions to two-phase upscaling in porous media. Transp. Porous Media 46, 155–178 (2002)

    Article  Google Scholar 

  39. Watts, J.W.: A compositional formulation of the pressure and saturation equations. SPE Reserv. Eng. 1 (3), 243–252 (1986)

    Article  Google Scholar 

  40. Wu, X.-H., Parashkevov, R., Stone, M., Lyons, S.: Global scale-up on reservoir models with piecewise constant permeability field. J. Algoritm. & Comput. technol. 2, 223–247 (2008)

    Article  Google Scholar 

  41. Zhang, P., Pickup, G.E., Christie, M.A.: A new practical method for upscaling in highly heterogeneous reservoir models. SPE J. 13, 68–76 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuguang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iranshahr, A., Chen, Y. & Voskov, D.V. A coarse-scale compositional model. Comput Geosci 18, 797–815 (2014). https://doi.org/10.1007/s10596-014-9427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-014-9427-x

Keywords

Navigation