Skip to main content
Log in

A review of Markov Chain Monte Carlo and information theory tools for inverse problems in subsurface flow

  • Review Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Parameter identification is one of the key elements in the construction of models in geosciences. However, inherent difficulties such as the instability of ill-posed problems or the presence of multiple local optima may impede the execution of this task. Regularization methods and Bayesian formulations, such as the maximum a posteriori estimation approach, have been used to overcome those complications. Nevertheless, in some instances, a more in-depth analysis of the inverse problem is advisable before obtaining estimates of the optimal parameters. The Markov Chain Monte Carlo (MCMC) methods used in Bayesian inference have been applied in the last 10 years in several fields of geosciences such as hydrology, geophysics or reservoir engineering. In the present paper, a compilation of basic tools for inference and a case study illustrating the practical application of them are given. Firstly, an introduction to the Bayesian approach to the inverse problem is provided together with the most common sampling algorithms with MCMC chains. Secondly, a series of estimators for quantities of interest, such as the marginal densities or the normalization constant of the posterior distribution of the parameters, are reviewed. Those reduce the computational cost significantly, using only the time needed to obtain a sample of the posterior probability density function. The use of the information theory principles for the experimental design and for the ill-posedness diagnosis is also introduced. Finally, a case study based on a highly instrumented well test found in the literature is presented. The results obtained are compared with the ones computed by the maximum likelihood estimation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., Slooten, L.J.: Inverse problem in hydrogeology. Hydrogeol. J. 13(1), 206–222 (2005)

    Google Scholar 

  2. Burnham, K.P., Anderson, D.R.: Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer, New York (2002)

    Google Scholar 

  3. Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. trans. R. Soc. Lond., A 222, 309–368 (1922)

    Google Scholar 

  4. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automat. Contr. AC-19(6), 716–723 (1974)

    MathSciNet  Google Scholar 

  5. de Leeuw, J.: Information theory and an extension of the maximum likelihood principle by Hirotogu Akaike. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics, pp. 599–609. Springer, Berlin (1990)

    Google Scholar 

  6. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    MATH  Google Scholar 

  7. Rissanen, J.: Stochastic complexity. J. R. Stat. Soc., B 49(3), 223–239 (1987)

    MATH  MathSciNet  Google Scholar 

  8. Kashyap, R.L.: Optimal choice of Ar and Ma parts in augoregressive moving average models. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4(2), 99–104 (1982)

    MathSciNet  Google Scholar 

  9. Young, P., Wallis, S.: Recursive estimation: a unified approach to the identification estimation, and forecasting of hydrological systems. Appl. Math. Comput. 17(4), 299–334 (1985)

    MATH  MathSciNet  Google Scholar 

  10. Young, P.C., Beven, K.J.: Data-based mechanistic modelling and the rainfall-flow non-linearity. Environmetrics 5(3), 335–363 (1994)

    Google Scholar 

  11. Neuman, S.P., Carrera, J.: Maximum-likelihood adjoint-state finite-element estimation of groundwater parameters under steady- and nonsteady-state conditions. Appl. Math. Comput. 17(4), 405–432 (1985)

    MathSciNet  Google Scholar 

  12. Noakes, D.J., McLeod, A.I., Hipel, K.W.: Forecasting monthly riverflow time series. Int. J. Forecast. 1(2), 179–190 (1985)

    Google Scholar 

  13. Ledesma, A., Gens, A., Alonso, E.E.: Parameter and variance estimation in geotechnical backanalysis using prior information. Int. J. Numer. Anal. Methods Geomech. 20(2), 119–141 (1996)

    MATH  Google Scholar 

  14. Di Baldassarre, G., Laio, F., Montanari, A.: Design flood estimation using model selection criteria. Phys. Chem. Earth, A/B/C 34(10–12), 606–611 (2009)

    Google Scholar 

  15. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1985)

    MATH  Google Scholar 

  16. Diciccio, T.J., Kass, R.E., Raftery, A., Wasserman, L.: Computing Bayes factors by combining simulation and asymptotic approximations. J. Am. Stat. Assoc. 92(439), 903–915 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90(430), 773–895 (1995)

    MATH  Google Scholar 

  18. Perreault, L., Bernier, J., Bobée, B., Parent, E.: Bayesian change-point analysis in hydrometeorological time series. Part 2. Comparison of change-point models and forecasting. J. Hydrol. 235(3–4), 242–263 (2000)

    Google Scholar 

  19. Poeter, E., Anderson, D.: Multimodel ranking and inference in ground water modeling. Ground Water 43(4), 597–605 (2005)

    Google Scholar 

  20. Marshall, L., Nott, D., Sharma, A.: Hydrological model selection: a Bayesian alternative. Water Resour. Res. 41(10), W10422 (2005)

    Google Scholar 

  21. Frost, A.J., Thyer, M.A., Srikanthan, R., Kuczera, G.: A general Bayesian framework for calibrating and evaluating stochastic models of annual multi-site hydrological data. J. Hydrol. 340(3–4), 129–148 (2007)

    Google Scholar 

  22. Neuman, S.P.: Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch. Environ. Res. Risk Assess. 17(5), 291–305 (2003)

    MATH  Google Scholar 

  23. Ajami, N.K., Duan, Q., Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res. 43(1), W01403 (2007)

    Google Scholar 

  24. Carrera, J., Neuman, S.P.: Estimation of aquifer parameters under transient and steady state conditions: I. Maximum likelihood method incorporating prior information. Water Resour. Res. 22(2), 199–210 (1986)

    Google Scholar 

  25. Carrera, J., Neuman, S.P.: Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resour. Res. 22(2), 211–227 (1986)

    Google Scholar 

  26. McLaughlin, D., Townley, L.R.: A reassessment of the groundwater inverse problem. Water Resour. Res. 32(5), 1131–1161 (1996)

    Google Scholar 

  27. Young, P.: Data-based mechanistic modelling, generalised sensitivity and dominant mode analysis. Comput. Phys. Commun. 117(1–2), 113–129 (1999)

    Google Scholar 

  28. Young, P.C., McKenna, P., Bruun, J.: Identification of non-linear stochastic systems by state dependent parameter estimation. Int. J. Control 74(18), 1837–1857 (2001)

    MATH  MathSciNet  Google Scholar 

  29. Young, P.C.: The data-based mechanistic approach to the modelling, forecasting and control of environmental systems. Annu. Rev. Control 30(2), 169–182 (2006)

    Google Scholar 

  30. Kuczera, G., Kavetski, D., Franks, S., Thyer, M.: Towards a Bayesian total error analysis of conceptual rainfall-runoff models: characterising model error using storm-dependent parameters. J. Hydrol. 331(1–2), 161–177 (2006)

    Google Scholar 

  31. Romanowicz, R.J., Young, P.C., Beven, K.J.: Data assimilation and adaptive forecasting of water levels in the river Severn catchment, United Kingdom. Water Resour. Res. 42(6), W06407 (2006)

    Google Scholar 

  32. Reichert, P., Mieleitner, J.: Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters. Water Resour. Res. 45(10), W10402 (2009)

    Google Scholar 

  33. Aldrich, J.: R. A. Fisher and the making of maximum likelihood 1912–1922. Stat. Sci. 12(3), 162–176 (1997)

    MATH  MathSciNet  Google Scholar 

  34. Edwards, A.W.F.: Likelihood, Expanded edn. Johns Hopkins University Press, Baltimore (1992)

    Google Scholar 

  35. Kay, S.M.: Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory. Prentice Hall, Upper Saddle River (1993)

    Google Scholar 

  36. Yeh, T.-C.J., Simunek, J.: Stochastic fusion of information for characterizing and monitoring the vadose zone. Vadose Zone J. 1(2), 207–221 (2002)

    Google Scholar 

  37. Yeh, T.C.J., Lee, C.H., Hsu, K.C., Tan, Y.C.: Fusion of active and passive hydrologic and geophysical tomographic surveys: the future of subsurface characterization. Data integration in subsurface hydrology. Geophys. Monogr. 171, 109–120 (2007)

    Google Scholar 

  38. Renard, B., Kavetski, D., Kuczera, G., Thyer, M., Franks, S.W.: Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors. Water Resour. Res. 46(5), W05521 (2010)

    Google Scholar 

  39. Gelfand, A.E., Sahu, S.K.: Identifiability, improper priors and Gibbs sampling for generalized linear models. J. Am. Stat. Assoc. 94(445), 247–253 (1999)

    MATH  MathSciNet  Google Scholar 

  40. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)

    MATH  Google Scholar 

  41. Aster, R.C., Borchers, B., Thurber, C.H.: Parameter Estimation and Inverse Problems. Academic Press, San Diego (2005)

    MATH  Google Scholar 

  42. Howie, D.: Interpreting Probability: Controversies and Developments in the Early Twentieth Century. Cambridge Studies in Probability, Induction and Decision Theory. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  43. Jaynes, E.T., Bretthorst, G.L.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  44. Jeffreys, H.: Theory of Probability, 3rd edn. Oxford Classic Texts in the Physical Sciences. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  45. Jaynes, E.T.: How does the brain do plausible reasoning? In: Erickson, G.J., Smith, C.R. (eds.) Maximum-Entropy and Bayesian Methods in Science and Engineering, vol. 1, pp. 1–24. Kluwer, Dordrecht (1988)

    Google Scholar 

  46. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, Philadelphia, USA (2005)

    MATH  Google Scholar 

  47. Tarantola, A., Valette, B.: Generalized nonlinear inverse problems solved using the least squares criterion. Rev. Geophys. Space Phys. 20(2), 219–232 (1982)

    MathSciNet  Google Scholar 

  48. Hanna, S., Yeh, T.C.J.: Estimation of co-conditional moments of transmissivity, hydraulic head, and velocity fields. Adv. Water Resour. 22(1), 87–95 (1998)

    Google Scholar 

  49. Lehman, E.L., Casella, G.: Theory of Point Estimation, 2nd edn. Springer, New York (1998)

    Google Scholar 

  50. Woodbury, A., Sudicky, E., Ulrych, T.J., Ludwig, R.: Three-dimensional plume source reconstruction using minimum relative entropy inversion. J. Contam. Hydrol. 32(1–2), 131–158 (1998)

    Google Scholar 

  51. Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  52. Vogel, C.R.: Computational methods for inverse problems. Frontiers in Applied Mathematics. SIAM, University City Science, Center, PATraduce (2002)

  53. Zhdanov, M.: Geophysical inverse theory and regularization problems, vol. 36. Methods in Geochemistry and Geophysics. Elsevier, Amsterdam (2002)

    Google Scholar 

  54. Mosegaard, K., Tarantola, A.: Probabilistic approach to inverse problems. In: Lee, W.H.K., Kanamori, H., Jennings, P., Kisslinger, C. (eds.) International Handbook of Earthquake and Engineering Seismology, vol. A, pp. 237–265. Academic Press, London (2002)

    Google Scholar 

  55. Skahill, B.E., Doherty, J.: Efficient accommodation of local minima in watershed model calibration. J. Hydrol. 329(1–2), 122–139 (2006)

    Google Scholar 

  56. Kavetski, D., Clark, M.P.: Ancient numerical Daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction. Water Resour. Res. 46(10), W10511 (2010)

    Google Scholar 

  57. Beven, K., Binley, A.: The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process. 6(3), 279–298 (1992)

    Google Scholar 

  58. Box, G.E.P., Tiao, G.C.: Bayesian Inference in Statistical Analysis, Reprint edn. Wiley, New York (1992)

    Google Scholar 

  59. Ulrych, T.J., Sacchi, M.D., Woodbury, A.: A Bayes tour of inversion: a tutorial. Geophysics 66(1), 55–69 (2001)

    Google Scholar 

  60. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique, pp. 49–52. Princeton University Bulletin (1902)

  61. Bennet, J.H. (ed.) R. A. Fisher. Statistical Inference and Analysis. Selected correspondence of R.A. Fisher. Oxford University Press, Oxford (1990)

    Google Scholar 

  62. Kavetski, D., Kuczera, G., Franks, S.W.: Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory - art. no. W03407. Water Resour. Res. 42(3), 3407–3407 (2006)

    Google Scholar 

  63. Kavetski, D., Kuczera, G., Franks, S.W.: Bayesian analysis of input uncertainty in hydrological modeling: 2. Application - art. no. W03408. Water Resour. Res. 42(3), 3408–3408 (2006)

    Google Scholar 

  64. Bretthorst, G.L.: An Introduction to Parameter-Estimation Using Bayesian Probability-Theory. In: Fougère, P.F. (ed.) Maximum Entropy and Bayesian Methods ///, vol. 39. Fundamental Theories of Physics, pp. 53–79. Kluwer, Dordrecht (1990)

    Google Scholar 

  65. Amar, J.G.: The Monte Carlo method in science and engineering. Comput. Sci. Eng. 8(2), 9–19 (2006)

    Google Scholar 

  66. Beichl, I., Sullivan, F.: Monte Carlo methods. Comput. Sci. Eng. 8(2), 7–8 (2006)

    Google Scholar 

  67. Sorensen, D.: Likelihood. Bayesian and MCMC Methods in Genetics. Springer, New York (2002)

    MATH  Google Scholar 

  68. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Google Scholar 

  69. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    MATH  Google Scholar 

  70. Kuczera, G., Parent, E.: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. J. Hydrol. 211(1–4), 69–85 (1998)

    Google Scholar 

  71. Vrugt, J.A., Bouten, W., Gupta, H.V., Sorooshian, S.: Toward improved identifiability of hydrologic model parameters: the information content of experimental data. Water Resour. Res. 38(12), 481–4813 (2002)

    Google Scholar 

  72. Fu, J., Jaime Gómez-Hernández, J.: Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov Chain Monte Carlo method. J. Hydrol. 364(3–4), 328–341 (2009)

    Google Scholar 

  73. Chen, J., Hubbard, S., Rubin, Y., Murray, C., Roden, E., Majer, E.: Geochemical characterization using geophysical data and Markov Chain Monte Carlo methods: a case study at the South Oyster bacterial transport site in Virginia. Water Resour. Res. 40(12), 1–14 (2004)

    Google Scholar 

  74. Chen, J., Hubbard, S., Peterson, J., Williams, K., Fienen, M., Jardine, P., Watson, D.: Development of a joint hydrogeophysical inversion approach and application to a contaminated fractured aquifer. Water Resour. Res. 42(6), W06425 (2006)

    Google Scholar 

  75. Fu, J., Gómez-Hernández, J.J.: A blocking Markov Chain Monte Carlo method for inverse stochastic hydrogeological modeling. Math. Geosci. 41(2), 105–128 (2009)

    MATH  Google Scholar 

  76. Oliver, D.S., Cunha, L.B., Reynolds, A.C.: Markov Chain Monte Carlo methods for conditioning a permeability field to pressure data. Math. Geol. 29(1), 61–91 (1997)

    Google Scholar 

  77. Efendiev, Y., Datta-Gupta, A., Ginting, V., Ma, X., Mallick, B.: An efficient two-stage Markov Chain Monte Carlo method for dynamic data integration. Water Resour. Res. 41(12), 1–6 (2005)

    Google Scholar 

  78. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(6), 721–741 (1984)

    Google Scholar 

  79. Gelfand, A.E., Hills, S.E., Racine-Poon, A., Smith, A.F.M.: Illustration of Bayesian inference in normal data models using gibbs sampling. J. Am. Stat. Assoc. 85(412), 972–985 (1990)

    Google Scholar 

  80. Kuczera, G., Kavetski, D., Renard, B., Thyer, M.: A limited-memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models. Water Resour. Res. 46(7), W07602 (2010)

    Google Scholar 

  81. Baragona, R., Battaglia, F., Poli, I.: Evolutionary Statistical Procedures. Statistics and Computing. Springer, Heidelberg (2011)

    Google Scholar 

  82. Drugan, M.M., Thierens, D.: Evolutionary Markov Chain Monte Carlo. Lect. Notes Comput. Sci. 2936, 63–76 (2004)

    Google Scholar 

  83. Ter Braak, C.J.F.: A Markov Chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16(3), 239–249 (2006)

    MathSciNet  Google Scholar 

  84. Vrugt, J.A., Ter Braak, C.J.F., Diks, C.G.H., Robinson, B.A., Hyman, J.M., Higdon, D.: Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. of Nonlinear Sci. & Numer. Simul. 10(3), 273–290 (2009)

    Google Scholar 

  85. Vrugt, J.A., ter Braak, C.J.F., Gupta, H.V., Robinson, B.A.: Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch. Environ. Res. Risk Assess. 23(7), 1011–1026 (2009)

    Google Scholar 

  86. Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15(1), 185–221 (2011)

    MATH  Google Scholar 

  87. Brooks, S.P., Gelman, A.: General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7(4), 434–455 (1998)

    MathSciNet  Google Scholar 

  88. Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7(4), 457–472 (1992)

    Google Scholar 

  89. Sorensen, D.A., Andersen, S., Gianola, D., Korsgaard, I.: Bayesian inference in threshold models using Gibbs sampling. Genet. Sel. Evol. 27, 229–249 (1995)

    Google Scholar 

  90. Cowles, M.K., Carlin, B.P.: Markov Chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc. 91(434), 883–904 (1996)

    MATH  MathSciNet  Google Scholar 

  91. Chen, M.H., Shao, Q.M., Ibrahim, J.G.: Monte Carlo Methods in Bayesian Computation. Springer Series in Statistics, Springer, New York (2000)

    MATH  Google Scholar 

  92. Gamerman, D., Freitas Lopes, H.: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman and Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  93. Efendiev, Y., Hou, T., Luo, W.: Preconditioning Markov Chain Monte Carlo simulations using coarse-scale models. SIAM J. Sci. Comput. 28(2), 776–803 (2006)

    MATH  MathSciNet  Google Scholar 

  94. Ginting, V., Pereira, F., Presho, M., Wo, S.: Application of the two-stage Markov Chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model. Comput. Geosci. 1–17 (2011). doi:10.1007/s10596-011-9236-4

  95. Emerick, A.A., Reynolds, A.C.: Combining the Ensemble Kalman Filter with Markov Chain Monte Carlo for Improved History Matching and Uncertainty Characterization. Paper presented at the SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 21–23 February (2011)

  96. Geyer, C.J.: Practical Markov Chain Monte Carlo. Stat. Sci. 7(4), 473–511 (1992)

    MathSciNet  Google Scholar 

  97. Gelfand, A.E., Smith, A.F.M., Lee, T.M.: Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. J. Am. Stat. Assoc. 87, 523–532 (1992)

    MathSciNet  Google Scholar 

  98. Chen, M.-H.: Importance-weighted marginal Bayesian posterior density estimation. J. Am. Stat. Assoc. 89(427), 818–824 (1994)

    MATH  Google Scholar 

  99. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley Series in Probability and Statistics. Wiley, New York (1992)

    MATH  Google Scholar 

  100. Scott, D.W., Sain, S.R.: Multi-dimensional density estimation. In: Rao, C.R., Wegman, E.J., Solka, J. (eds.) Handbook of Statistics: 24 Data Mining and Computational Statistics, Data Mining and Computational Statistics, vol. 24, pp. 229–262. Elsevier, Amsterdam (2004)

    Google Scholar 

  101. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  102. Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via diffusion. Ann. Stat. 38(5), 2916–2957 (2010)

    MATH  MathSciNet  Google Scholar 

  103. Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T.: Bayesian model averaging: a tutorial. Stat. Sci. 14(4), 382–417 (1999)

    MATH  MathSciNet  Google Scholar 

  104. Stewart, L.: Hierarchical bayesian analysis using Monte Carlo integration: computing posterior distributions when there are many possible models. Statistician 36(2/3), 211–219 (1987)

    Google Scholar 

  105. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen’s Monographs on Applied Probability and Statistics. Methuen & Co. LTD., London, UK (1964)

    Google Scholar 

  106. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran 77. The Art of Scientific Computing, vol. 1, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  107. Chen, M.H.: Computing marginal likelihoods from a single MCMC output. Stat. Neerl. 59(1), 16–29 (2005)

    MATH  Google Scholar 

  108. Kavetski, D.: Introduction to Bayesian inference using standard and hierarchical models. Paper presented at the Systemanalyse und Modellierung, Bayesian Uncertainty Analysis, Viena, Austria (2008)

  109. Thyer, M., Leonard, M., Kavetski, D., Need, S., Renard, B.: The open source RFortran library for accessing R from Fortran, with applications in environmental modelling. Environ. Model. Softw. 26(2), 219–234 (2011)

    Google Scholar 

  110. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods for Data Analysis. Statistics/Probability Series. Wadsworth & Brooks/Cole, Pacific Grove, California, USA (1983)

    MATH  Google Scholar 

  111. Finsterle, S., Faybishenko, B.: Inverse modeling of a radial multistep outflow experiment for determining unsaturated hydraulic properties. Adv. Water Resour. 22(5), 431–444 (1999)

    Google Scholar 

  112. De Pauw, D.J.W., Sin, G., Insel, G., Van Hulle, S.W.H., Vandenberghe, V., Vanrolleghem, P.A.: Discussion of “Assessing parameter identifiability of activated sludge model number 1” by Pedro Afonso and Maria da Conceição Cunha. J. Environ. Eng. 130(1), 110–112 (2004)

    Google Scholar 

  113. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  114. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    MATH  MathSciNet  Google Scholar 

  115. Thyer, M., Frost, A.J., Kuczera, G.: Parameter estimation and model identification for stochastic models of annual hydrological data: is the observed record long enough? J. Hydrol. 330(1–2), 313–328 (2006)

    Google Scholar 

  116. Gelfand, A.E., Dey, D.K.: Bayesian model choice: asymptotics and exact calculations. J. R. Stat. Soc., B 56(3), 501–514 (1994)

    MATH  MathSciNet  Google Scholar 

  117. Abellan, A., Noetinger, B.: Optimizing subsurface field data acquisition using information theory. Math. Geosci. 42(6), 603–630 (2010)

    MATH  MathSciNet  Google Scholar 

  118. Wu, C.M., Yeh, T.C.J., Zhu, J.F., Lee, T.H., Hsu, N.S., Chen, C.H., Sancho, A.F.: Traditional analysis of aquifer tests: comparing apples to oranges? Water Resour. Res. 41(9), W09402 (2005)

    Google Scholar 

  119. Moench, A.F., Garabedian, S.P., LeBlanc, D.R.: Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts. In: US Geological Survey Professional Paper, vol. 1629, pp. 1–51. US Geological Survey, Reston, Virginia (2001)

    Google Scholar 

  120. Moench, A.F.: Estimation of hectare-scale soil-moisture characteristics from aquifer-test data. J. Hydrol. 281(1–2), 82–95 (2003)

    Google Scholar 

  121. Moench, A.F.: Importance of the vadose zone in analyses of unconfined aquifer tests. Ground Water 42(2), 223–233 (2004)

    Google Scholar 

  122. Moench, A.F.: Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water 33(3), 378–384 (1995)

    Google Scholar 

  123. Moench, A.F.: Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer. Water Resour. Res. 33(6), 1397–1407 (1997)

    Google Scholar 

  124. Leblanc, D.R.: Sewage plume in a sand and gravel aquifer, Cape Cod, Massachusetts. In: U.S. Geological Survey, Open-File Report 84-475, p. 28. U.S. Geological Survey, Washington (1984)

    Google Scholar 

  125. Leblanc, D.R., Guswa, J.H., Frimpter, M.H., Londquist, C.J.: Ground-water resources of Cape Cod, Massachusetts. In: U.S. Geological Survey, Hydrologic Atlas 692, p. 4. U.S. Geological Survey, Reston, Virginia (1986)

    Google Scholar 

  126. Masterson, J.P., Stone, B.D., Walters, D.A., Savoie, J.: Hydrogeologic framework of western Cape Cod, Massachusetts. In: U.S. Geological Survey, Hydrologic Atlas 741, p. 1. U.S. Geological Survey, Reston, Virginia (1997)

    Google Scholar 

  127. Doherty, J., Brebber, L., Whyte, P.: PEST: Model Independent Parameter Estimation, p. 249. Watermark Numerical Computing (1994)

  128. Genz, A.: Numerical computation of multivariate normal probabilities. J. Comput. Graph. Stat. 1(1), 141–149 (1992)

    MathSciNet  Google Scholar 

  129. Tanner, M.A.: Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions. Springer Series in Statistics. Springer, New York (1996)

    MATH  Google Scholar 

  130. Chen, M.H., Shao, Q.M.: Monte carlo estimation of bayesian credible and HPD interval. J. Comput. Graph. Stat. 8(1), 69–92 (1999)

    MathSciNet  Google Scholar 

  131. Boonstra, J., Kselik, R.A.L.: SATEM 2002: Software for Aquifer Test Evaluation. Publication 57. p. 148. International Institute for Land Reclamation and Improvement. Wageningen, The Netherlands (2001)

  132. Massey, F.J.: The Kolmogorov–Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Yustres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yustres, Á., Asensio, L., Alonso, J. et al. A review of Markov Chain Monte Carlo and information theory tools for inverse problems in subsurface flow. Comput Geosci 16, 1–20 (2012). https://doi.org/10.1007/s10596-011-9249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-011-9249-z

Keywords

Mathematics Subject Classifications

Navigation