Skip to main content
Log in

Synthesis and in vitro anticancer potential of new thiazole-containing derivatives of rhodanine

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

New 1,3-thiazol-2-yl-, 1,3-thiazol-4-yl-, and 1,3-thiazol-5-yl-containing derivatives of N-arylalkyl- and N-carboxyalkyl-substituted rhodanines were synthesized via Knoevenagel condensation and tested against 60 cancer cell lines of NCI panel. Among these compounds, N-[2-(4-methoxyphenyl)ethyl], N-[2-(3,4-dimethoxyphenyl)ethyl], and N-carboxydecyl rhodanines with 1,3-thiazol-4-yl or 1,3-thiazol-5-yl fragments were the most effective agents causing growth inhibition of more than 50% of the individual lines of the panel. Their activity was characterized by calculated mean values of 50% growth inhibition (GI50), total growth inhibition (TGI), and 50% cell killing (LC50). For sensitive cell lines of the total panel, mean GI50 and mean TGI were similar for compounds bearing N-[2-(4-methoxyphenyl) ethyl] and N-[2-(3,4-dimethoxyphenyl)ethyl] substituents, and significantly lower for compound with N-carboxydecyl substituent. The increase in the activity of the 1,3-thiazol-5-yl-containing derivative of N-carboxyalkyl-substituted rhodanine was accompanied by a decrease in the number of cell lines sensitive to its inhibitory effects. According to the in vitro data, some of the cancer cell lines were targeted by this compound with activity ranging from submicromolar to micromolar levels. Based on molecular docking results, the possible targets for anticancer activity of the thiazole-containing rhodanine derivatives were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2

Similar content being viewed by others

References

  1. Kaminskyy, D.; Kryshchyshyn, A.; Lesyk, R. Expert Opin. Drug Discovery 2017, 12, 1233.

    CAS  Google Scholar 

  2. Mermer, A. Mini-Rev. Med. Chem. 2021, 21, 738.

    CAS  PubMed  Google Scholar 

  3. Mousavi, S. M.; Zarei, M.; Hashemi, S. A.; Babapoor, A.; Amani, A. M. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1132.

    CAS  Google Scholar 

  4. Szczepański, J.; Tuszewska, H.; Trotsko, N. Molecules 2022, 27, 3750.

    PubMed  PubMed Central  Google Scholar 

  5. Yin, L. J.; bin Ahmad Kamar, A. K. D.; Fung, G. T.; Liang, C. T.; Avupati, V. R. Biomed. Pharmacother. 2022, 145, 112406.

  6. Tomasic, T.; Mašič, P. L. Expert Opin. Drug Discovery 2012, 7, 549.

    CAS  Google Scholar 

  7. Mendgen, T.; Steuer, C.; Klein, C. D. J. Med. Chem. 2012, 55, 743.

    CAS  PubMed  Google Scholar 

  8. Gilberg, E.; Gütschow, M.; Bajorath, J. J. Med. Chem. 2018, 61, 1276.

    CAS  PubMed  Google Scholar 

  9. Bajorath, J. Expert Opin. Drug Discovery 2021, 16, 719.

    CAS  Google Scholar 

  10. El-Mawgoud, H. K. A. Chem. Pharm. Bull. 2019, 67, 1314.

    CAS  Google Scholar 

  11. Vatolin, S.; Phillips, J. G.; Jha, B. K.; Govindgari, S.; Hu, J.; Grabowski, D.; Parker, Y.; Lindner, D. J.; Zhong, F.; Distelhorst, C. W.; Smith, M. R.; Cotta, C.; Xu, Y.; Chilakala, S.; Kuang, R. R.; Tall, S.; Reu, F. J. Cancer Res. 2016, 75, 3340.

    Google Scholar 

  12. Bernardo, P. H.; Sivaraman, T.; Wan, K.-F.; Xu, J.; Krishnamoorthy, J.; Song, C. M.; Tian, L.; Chin, J. S. F.; Lim, D. S. W.; Mok, H. Y. K.; Yu, V. C.; Tong, J. C.; Chai, C. L. L. Pure Appl. Chem. 2011, 83, 723.

    CAS  Google Scholar 

  13. Li, P.; Zhang, W.; Jiang, H.; Li, Y.; Dong, C.; Chen, H.; Zhang, K.; Du, Z. Med. Chem. Commun. 2018, 9, 1194.

    CAS  Google Scholar 

  14. Insuasty, A.; Ramírez, J.; Raimondi, M.; Echeverry, C.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Rodríguez, M. V.; Zacchino, S. A.; Insuasty, B. Molecules 2013, 18, 5482.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. De Oliveira, J. F.; Lima, T. S.; Vendramini-Costa, D. B.; de Lacerda Pedrosa, S. C. B.; Lafayette, E. A.; da Silva, R. M. F.; de Almeida, S. M. V.; de Moura, R. O.; Ruiz, A. L. T. G.; de Carvalho, J. E.; do Carmo Alves de Lima, M. Eur. J. Med. Chem. 2017, 136, 305.

    PubMed  Google Scholar 

  16. Holota, S.; Kryshchyshyn, A.; Derkach, H.; Trufin, Y.; Demchuk, I.; Gzella, A.; Grellier, P.; Lesyk, R. Bioorg. Chem. 2019, 86, 126.

    CAS  PubMed  Google Scholar 

  17. Petrou, A.; Fesatidou, M.; Geronikaki, A. Molecules 2021, 26, 3166.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sharma, P. C.; Bansal, K. K.; Sharma, A.; Sharma, D.; Deep, A. Eur. J. Med. Chem. 2020, 188, 112016.

    CAS  PubMed  Google Scholar 

  19. Arshad, M. F.; Alam, A.; Alshammari, A. A.; Alhazza, M. B.; Alzimam, I. M.; Alam, M. A.; Mustafa, G.; Ansari, M. S.; Alotaibi, A. M.; Alotaibi, A. A.; Kumar, S.; Asdaq, S. M. B.; Imran, M.; Deb, P. K.; Venugopala, K. N.; Jomah, S. Molecules 2022, 27, 3994.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ozen, C.; Unlusoy, M. C.; Aliary, N.; Ozturk, M.; Dundar, O. B. J. Pharm. Pharm. Sci. 2017, 20, 415.

    CAS  PubMed  Google Scholar 

  21. Bataille, C. J. R.; Brennan, M. B.; Byrne, S.; Davies, S. G.; Durbin, M.; Fedorov, O.; Huber, K. V. M.; Jones, A. M.; Knapp, S.; Liu, G.; Nadali, A.; Quevedo, C. E.; Russell, A. J.; Walker, R. G.; Westwood, R.; Wynne, G. M. Bioorg. Med. Chem. 2017, 25, 2657.

    CAS  PubMed  Google Scholar 

  22. Sing, W. T.; Lee, C. L.; Yeo, S. L.; Lim, S. P.; Sim, M. M. Bioorg. Med. Chem. Lett. 2001, 11, 91.

    CAS  PubMed  Google Scholar 

  23. Holota, S.; Komykhov, S.; Sysak, S.; Gzella, A.; Cherkas, A.; Lesyk, R. Molecules 2021, 26, 1162.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Maccari, R.; Ottanà, R.; Curinga, C.; Vigorita, M. G.; Rakowitz, D.; Steindl, T. H.; Langer, T. H. Bioorg. Med. Chem. 2005, 13, 2809.

    CAS  PubMed  Google Scholar 

  25. Serafini, M.; Cargnin, S.; Massarotti, A.; Pirali, T.; Genazzani, A. A. J. Med. Chem. 2020, 63, 10170.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kobzar, O. L.,; Sinenko, V. O.; Shulha, Yu. V.; Buldenko, V. M.; Hodyna, D. M.; Pilyo, S. G.; Brovarets, V. S.; Vovk, A. I. Ukr. Bioorg. Acta. 2020, 15, 33.

  27. Wang, H.; Hammoudeh, D. I.; Follis, A. V.; Reese, B. E.; Lazo, J. S.; Metallo, S. J.; Prochownik, E. V. Mol. Cancer Ther. 2007, 6, 2399.

    CAS  PubMed  Google Scholar 

  28. Ahn, J. H.; Kim, S. J.; Park, W. S.; Cho, S. Y.; Ha, J. D.; Kim, S. S.; Kang, S. K.; Jeong, D. G.; Jung, S.-K.; Lee, S.-H.; Kim, H. M.; Park, S. K.; Lee, K. H.; Lee, C. W.; Ryu, S. E.; Choi, J.-K. Bioorg. Med. Chem. Lett. 2006, 16, 2996.

    CAS  PubMed  Google Scholar 

  29. Russell, A. J.; Westwood, I. M.; Crawford, M. H. J.; Robinson, J.; Kawamura, A.; Redfield, C.; Laurieri, N.; Lowe, E. D.; Davies, S. G.; Sim, E. Bioorg. Med. Chem. 2009, 17, 905.

    CAS  PubMed  Google Scholar 

  30. Sawaguchi, Y.; Yamazaki, R.; Nishiyama, Y.; Sasai, T.; Mae, M.; Abe, A.; Yaegashi, T.; Nishiyama, H.; Matsuzaki, T. Anticancer Res. 2017, 37, 4051.

    CAS  PubMed  Google Scholar 

  31. Ozer, E. B.; Caglayan, C.; Bayindir, S. Tetrahedron 2022, 120, 132896.

    CAS  Google Scholar 

  32. Swain, B.; Khan, A.; Singh, P.; Marde, V. S.; Angeli, A.; Chinchilli, K. K.; Yaddanapudi, V. M.; Carradori, S.; Supuran, C. T.; Arifuddin, M. Molecules 2022, 27, 8028.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cutshall, N. S.; O'Day, C.; Prezhdo, M. Bioorg. Med. Chem. Lett. 2005, 15, 3374.

    CAS  PubMed  Google Scholar 

  34. Harada, K.; Kubo, H.; Tanaka, A.; Nishioka, K. Bioorg. Med. Chem. Lett. 2012, 22, 504.

    CAS  PubMed  Google Scholar 

  35. Fu, H.; Hou, X.; Wang, L.; Dun, Y.; Yang, X.; Fang, H. Bioorg. Med. Chem. Lett. 2015, 25, 5265.

    CAS  PubMed  Google Scholar 

  36. Bernardo, P. H.; Sivaraman, T.; Wang, K.-F.; Xu, J.; Krishnamoorthy, J.; Song, C. M.; Tian, L.; Chin, J. S. F.; Lim, D. S. W.; Mok, H. Y. K.; Yu, V. C.; Tong, J. C.; Chai, C. L. L. J. Med. Chem. 2010, 53, 2314.

    CAS  PubMed  Google Scholar 

  37. Zhang, L.; Zhang, H.; Zhao, Y.; Li, Z.; Chen, S.; Zhai, J.; Chen, Y.; Xie, W.; Wang, Z.; Li, Q.; Zheng, X.; Hu, X. FEBS Lett. 2013, 587, 3681.

    CAS  PubMed  Google Scholar 

  38. Maccari, R.; Corso, A. D.; Paoli, P.; Adornato, I.; Lori, G.; Balestri, F.; Cappiello, M.; Naß, A.; Wolber, G.; Ottanà, R. Bioorg. Med. Chem. Lett. 2018, 28, 3712.

    CAS  PubMed  Google Scholar 

  39. Sun, L.; Wang, P.; Xu, L.; Gao, L.; Li, J.; Piao, H. Bioorg. Med. Chem. Lett. 2019, 29, 1187.

    CAS  PubMed  Google Scholar 

  40. Xie, Y.; Liu, Y.; Gong, G.; Rinderspacher, A.; Deng, S.-X.; Smith, D. H.; Toebben, U.; Tzilianos, E.; Branden, L.; Vidović, D.; Chung, C.; Schürer, S.; Tautz, L.; Landry, D. W. Bioorg. Med. Chem. Lett. 2008, 18, 2840.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brahmbhatt, H.; Oppermann, S.; Osterlund, E. J.; Leber, B.; Andrews, D. W. Clin. Cancer Res. 2015, 21, 2671.

    CAS  PubMed  Google Scholar 

  42. Lessene, G.; Czabotar, P. E.; Sleebs, B. E.; Zobel, K.; Lowes, K. N.; Adams, J. M.; Baell, J. B.; Colman, P. M.; Deshayer, K.; Fairbrother, W. J.; Flygare, J. A.; Gibbons, P.; Kersten, W. J. A.; Kaulasegaram, S.; Moss, R. M.; Parisot, J. P.; Smith, B. J.; Street, I. P.; Yang, H.; Huang, D. C. S.; Watson, K. G. Nat. Chem. Biol. 2013, 9, 390.

    CAS  PubMed  Google Scholar 

  43. Brusnakov, M.; Golovchenko, O.; Velihina, Y.; Liavynets, O.; Zhirnov, V.; Brovarets, V. ChemMedChem 2022, 17, e202200319.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Trott, O.; Olson, A. J. J. Comput. Chem. 2011, 31, 455.

    Google Scholar 

  45. Yokota, T.; Nara, Y.; Kashima, A.; Matsubara, K.; Misawa, S.; Kato, R.; Sugio, S. Proteins: Struct. Funct. Genet. 2007, 66, 272.

    CAS  PubMed  Google Scholar 

  46. Murray, J. B.; Davidson, J.; Chen, I.; Davis, B.; Dokurno, P.; Graham, C. J.; Harris, R.; Jordan, A. J.; Matassova, N.; Pedder, C.; Ray, S.; Roughley, S. D.; Smith, J.; Walmsley, C.; Wang, Y.; Whitehead, N.; Williamson, D. S.; Casara, P.; Diguarher, T. L.; Hickman, J.; Stark, J.; Kotschy, A.; Geneste, O.; Hubbard, R. E. ACS Omega 2019, 4, 8892.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, L.; Doherty, G. A.; Judd, A. S.; Tao, Z.-F.; Hansen, T. M.; Frey, R. R.; Song, X.; Bruncko, M.; Kunzer, A. R.; Wang, X.; Wendt, M. D.; Flygare, J. A.; Catron, N. D.; Judge, R. A.; Park, C. H.; Shekhar, S.; Phillips, D. C.; Nimmer, P.; Smith, M. L.; Tahir, S. K.; Xiao, Y.; Xue, J.; Zhang, H.; Le, P. N.; Mitten, M. J.; Boghaert, E. R.; Gao, W.; Kovar, P.; Choo, E. F.; Diaz, D.; Fairbrother, W. J.; Elmore, S. W.; Sampath, D.; Leverson, J. D.; Souers, A. J. ACS Med. Chem. Lett. 2020, 11, 1829.

    Google Scholar 

  48. Cousido-Siah, A.; Ruiz, F. X.; Crespo, I.; Porté, S.; Mitschler, A.; Pares, X.; Podjarny, A.; Farrés, J. Chem. Biol. Interact. 2015, 234, 290.

    CAS  PubMed  Google Scholar 

  49. Ala, P. J.; Gonneville, L.; Hillman, M. C.; Becker-Pasha, M.; Wei, M.; Reid, B. G.; Klabe, R.; Yue, E. W.; Wayland, B.; Douty, B.; Polam, P.; Wasserman, Z.; Bower, M.; Combs, A. P.; Burn, T. C.; Hollis, G. F.; Wynn, R. J. Biol. Chem. 2006, 181, 32795.

    Google Scholar 

  50. Wei, H.; Ruthenburg, A. J.; Bechis, S. K.; Verdine, G. L. J. Biol. Chem. 2005, 280, 37041.

    CAS  PubMed  Google Scholar 

  51. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanner, M. F. J. Mol. Graph. Model. 1999, 17, 57.

    CAS  PubMed  Google Scholar 

  53. Marvin 5.2.4, 2009, ChemAxon (http://www.chemaxon.com).

  54. Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. J. Cheminform. 2012, 4, 17.

    CAS  Google Scholar 

Download references

We would like to thank National Cancer Institute, Bethesda, MD, USA, for in vitro evaluation of anticancer activity within the framework of Developmental Therapeutic Program and Enamine Ltd. for the material and technical support of the synthesis of compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr S. Brovarets.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2023, 59(6/7), 484–493

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2876 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Los, O.V., Sinenko, V.O., Kobzar, O.L. et al. Synthesis and in vitro anticancer potential of new thiazole-containing derivatives of rhodanine. Chem Heterocycl Comp 59, 484–493 (2023). https://doi.org/10.1007/s10593-023-03220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-023-03220-z

Keywords

Navigation