Skip to main content

Advertisement

Log in

Transcribing molecular and climatic data into conservation management for the Himalayan endangered species, Taxus contorta (Griff.)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Owing to the changing climatic scenario globally, and human overexploitation, the risk of extinction of Himalayan endangered species has increased many folds. Taxus contorta, an endangered gymnosperm has reached a decisive state in the Western Himalayas, thus, demands immediate attention to rescue it. This study aims to elucidate population and landscape genetics of T. contorta to plan a successful conservation strategy. We used SSR genotyping to identify genetic diversity hotspots, and ecological niche modeling to reveal climatic hotspots of T. contorta in the Indian Western Himalayas. We observed a substantial genetic diversity, and a negligible level of inbreeding among T. contorta populations. A genetic bottleneck was observed in several populations. We propose that changing climate can cause a failure of an entire conservation management plan if the shift produces a degraded environment in the future, at the sites of conservation. Further, the conservation management is futile if it fails to enhance or conserve the genetic diversity. We propound that use of germplasm from genetic diversity hotspots for propagation in climatic hotspots, and prioritization of these hotspot patches for conservation would ensure greater genetic variability under a safe environment. This integrative approach of translating molecular and climatic data into conservation planning would save our efforts, time, and capital investment, and ensure greater success in managing the revival of T. contorta in the Western Himalayas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No nucleic acid sequence data was generated in this manuscript.

References

  • Bergl RA, Bradley BJ, Nsubuga A, Vigilant L (2008) Effects of habitat fragmentation, population size and demographic history on genetic diversity: the Cross River gorilla in a comparative context. Am J Primatol 70(9):848–859

    PubMed  Google Scholar 

  • Caballero A, Rodríguez-Ramilo ST (2010) A new method for the partition of allelic diversity within and between subpopulations. Conserv Genet 11(6):2219–2229

    Google Scholar 

  • Cheng BB, Sun ZYQ (2015) Genetic diversity and population structure of Taxus cuspidata in the Changbai Mountains assessed by chloroplast DNA sequences and microsatellite markers. Biochem Syst Ecol 63:157–164

    CAS  Google Scholar 

  • Choudhary S, Thakur S, Najar RA, Majeed A, Singh A, Bhardwaj P (2018) Transcriptome characterization and screening of molecular markers in ecologically important Himalayan species (Rhododendron arboreum). Genome 61(6):417–428

    CAS  PubMed  Google Scholar 

  • Chung MG, Oh GS, Chung JM (1999) Allozyme variation in Korean populations Taxus cuspidate (Taxaceae). Scand J For Res 14:103–110

    Google Scholar 

  • Chybicki IJ, Oleksa A, Kowalkowska K (2012) Variable rates of random genetic drift in protected populations of English yew: implications for gene poolconservation. Conserv Genet 13(4):899–911

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crimmins TM, Crimmins MA, David BC (2009) Flowering range changes across an elevation gradient in response to warming summer temperatures. Glob Change Biol 15:1141–1152

    Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    PubMed  PubMed Central  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Res 14:209–214

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12(13):39–40

    Google Scholar 

  • Dubreuil M, Riba M, González-Martínez SC, Vendramin GG, Sebastiani F, Mayol M (2010) Genetic effects of chronic habitat fragmentation revisited: strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am J Bot 97(2):303–310

    PubMed  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4(2):359–361

    Google Scholar 

  • El-Kassaby YA, Yanchuk AD (1994) Genetic diversity, differentiation, and inbreeding in Pacific yew from British Columbia. J Hered 85(2):112–117

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    CAS  PubMed  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315

    Google Scholar 

  • Frankham R (2005) Stress and adaptation in conservation genetics. J Evol Biol 18(4):750–755

    CAS  PubMed  Google Scholar 

  • Gargiulo R, Saubin M, Rizzuto G, West B, Fay MF, Kallow S, Trivedi C (2019) Genetic diversity in British populations of Taxus baccata L.: is the seedbank collection representative of the genetic variation in the wild? Biol Conserv 233:289–297

    Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10(2):305–318

    CAS  PubMed  Google Scholar 

  • Gilbert KJ, Andrew RL, Bock DG, Franklin MT, Kane NC, Moore JS, Vines TH (2012) Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program STRUCTURE. Mol Ecol 21(20):4925–4930

    PubMed  Google Scholar 

  • González-Martínez SC, Dubreuil M, Riba M, Vendramin GG, Sebastiani F, Mayol M (2010) Spatial genetic structure of Taxus baccata L. in the western Mediterranean Basin: past and present limits to gene movement over a broad geographic scale. Mol Phylogenet Evol 55(3):805–815

    PubMed  Google Scholar 

  • Haanes H, Røed KH, Perez-Espona S, Rosef O (2011) Low genetic variation support bottlenecks in Scandinavian red deer. Eur J Wildl Res 57(6):1137–1150

    Google Scholar 

  • Hahn T, Kettle CJ, Ghazoul J, Frei ER, Matter P, Pluess AR (2012) Patterns of genetic variation across altitude in three plant species of semi-dry grasslands. PLoS ONE 7:8

    Google Scholar 

  • Huang L, Deng X, Li R, Xia Y, Bai G, Siddique KH, Guo P (2018) A fast silver staining protocol enabling simple and efficient detection of SSR markers using a non-denaturing polyacrylamide gel. J Vis Exp 134:e57192

    Google Scholar 

  • Hülber K, Winkler M, Grabherr G (2010) Intraseasonal climate and habitat-specific variability controls the flowering phenology of high alpine plant species. Funct Ecol 24(2):245–252

    Google Scholar 

  • Jangjoo M, Matter SF, Roland J, Keyghobadi N (2016) Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network. Proc Natl Acad Sci USA 113(39):10914–10919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Júnior PDM, Nóbrega CC (2018) Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE 13(9):e0202403

    Google Scholar 

  • Kaljund K, Jaaska V (2010) No loss of genetic diversity in small and isolated populations of Medicago sativa subsp. falcata. Biochem Syst Ecol 38(4):510–520

    CAS  Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75:2868–2872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kishor K, Upreti BM, Pangtey YPS, Tewari A, Tewari LM (2015) Propagation and conservation of Himalayan Yew (Taxus baccata L.) through air layering: a simple method of clonal propagation. Ann Plant Sci 4(4):1064–1067

    Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Res 15(5):1179–1191

    CAS  Google Scholar 

  • Kozyrenko MM, Artyukova EV, Chubar EA (2017) Genetic diversity and population structure of Taxus cuspidata Sieb. et Zucc ex Endl (Taxaceae) in Russia according to data of the nucleotide polymorphism of intergenic spacers of the chloroplast genome. Russ J Genet 53(8):865–874

    CAS  Google Scholar 

  • Lavabre JE, García GD (2015) Geographic consistency in the seed dispersal patterns of Taxus baccata L. in the Iberian Peninsula. For Syst 24(3):40

    Google Scholar 

  • Leonardi S, Piovani P, Scalfi M, Piotti A, Giannini R, Menozzi P (2012) Effect of habitat fragmentation on the genetic diversity and structure of peripheral populations of beech in Central Italy. J Hered 103(3):408–417

    PubMed  Google Scholar 

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9(4):753–760

    Google Scholar 

  • Li N, Shu X, He S, Jiang Y, Xia B, Peng F (2010) ISSR analysis of genetic diversity of Taxus chinensis var. mairei. Acta Botanica Boreali-Occidentalia Sinica 30(12):2536–2541

    CAS  Google Scholar 

  • Litkowiec M, Lewandowski A, Wachowiak W (2018) Genetic variation in Taxus baccata L.: a case study supporting Poland’s protection and restoration program. For Ecol Manage 409:148–160

    Google Scholar 

  • Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963–974

    CAS  PubMed  Google Scholar 

  • Majeed A, Singh A, Choudhary S, Bhardwaj P (2019) Transcriptome characterization and development of functional polymorphic SSR marker resource for Himalayan endangered species, Taxus contorta (Griff). Ind Crops Prod 140:111600

    CAS  Google Scholar 

  • Majeed A, Kaur H, Bhardwaj P (2020) Selection constraints determine preference for A/U-ending codons in Taxus contorta. Genome 63(4):215–224

    CAS  PubMed  Google Scholar 

  • Majeed A, Singh A, Sharma RK, Jaitak V, Bhardwaj P (2020) Comprehensive temporal reprogramming ensures dynamicity of transcriptomic profile for adaptive response in Taxus contorta. Mol Genet Genomics 295(6):1401–1414

    CAS  PubMed  Google Scholar 

  • Majeed A, Goel B, Mishra V, Kohli R, Bhardwaj P (2020) Elucidation of genetic diversity base in Calotropis procera–a potentially emerging new fibre resource. Plant Genet Resources 18(3):159–167

    CAS  Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76(2):173–190

    PubMed  Google Scholar 

  • Miao YC, Lang XD, Zhang ZZ, Su JR (2014) Phylogeography and genetic effects of habitat fragmentation on endangered Taxus yunnanensis in southwest China as revealed by microsatellite data. Plant Biol 16(2):365–374

    CAS  PubMed  Google Scholar 

  • Miao YC, Zhang ZJ, Su JR (2016) Low genetic diversity in the endangered Taxus yunnanensis following a population bottleneck, a low effective population size and increased inbreeding. Silvae Genetica 65(1):59–66

    Google Scholar 

  • Moeller M, Gao LM, Mill RR, Li DZ, Hollingsworth ML, Gibby M (2007) Morphometric analysis of the Taxus wallichiana complex (Taxaceae) based on herbarium material. Bot J Linn Soc 155(3):307–335

    Google Scholar 

  • Mohapatra KP, Sehgal RN, Sharma RK, Mohapatra T (2009) Genetic analysis and conservation of endangered medicinal tree species Taxus wallichiana in the Himalayan region. New Forest 37(2):109–121

    Google Scholar 

  • Myking T, Vakkari P, Skrøppa T (2009) Genetic variation in northern marginal Taxus baccata L. populations. Implications for conservation. Forestry 82(5):529–539

    Google Scholar 

  • Ohsawa T, Saito Y, Sawada H, Ide Y (2008) Impact of altitude and topography on the genetic diversity of Quercus serrata populations in the Chichibu Mountains, central Japan. Flora 203(3):187–196

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Google Scholar 

  • Poudel RC, Moeller M, Gao LM, Ahrends A, Baral SR, Liu J, Li DZ (2012) Using morphological, molecular and climatic data to delimitate yews along the Hindu Kush-Himalaya and adjacent regions. PLoS ONE 7(10):e46873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poudel RC, Möller M, Liu J, Gao LM, Baral SR, Li DZ (2014) Low genetic diversity and high inbreeding of the endangered yews in Central Himalaya: implications for conservation of their highly fragmented populations. Divers Distrib 20(11):1270–1284

    Google Scholar 

  • Poudel RC, Möller M, Li DZ, Shah A, Gao LM (2014) Genetic diversity, demographical history and conservation aspects of the endangered yew tree Taxus contorta (syn Taxus fuana) in Pakistan. Tree Genet Genomes 10(3):653–665

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Purohit A, Maikhuri RK, Rao KS, Nautiyal S (2001) Impact of bark removal on survival of Taxus baccata L. (Himalayan yew) in Nanda Devi biosphere reserve, Garhwal Himalaya, India. Curr Sci 12:586–590

    Google Scholar 

  • Sastre N, Vila C, Salinas M, Bologov VV, Urios V, Sánchez A, Ramírez O (2011) Signatures of demographic bottlenecks in European wolf populations. Conserv Genet 12(3):701–712

    Google Scholar 

  • Senneville S, Beaulieu J, Daoust G, Deslauriers M, Bousquet J (2001) Evidence for low genetic diversity and metapopulation structure in Canada yew (Taxus canadensis): considerations for conservation. Can J For Res 31(1):110–116

    Google Scholar 

  • Shah A, Li DZ, Gao LM, Li HT, Möller M (2008) Genetic diversity within and among populations of the endangered species Taxus fuana (Taxaceae) from Pakistan and implications for its conservation. Biochem Syst Ecol 36(3):183–193

    CAS  Google Scholar 

  • Thakur S, Choudhary S, Singh A, Ahmad K, Sharma G, Majeed A, Bhardwaj P (2016) Genetic diversity and population structure of Melia azedarach in North-Western Plains of India. Trees 30(5):1483–1494

    Google Scholar 

  • Vu DD, Bui TTX, Nguyen MT, Vu G, Nguyen MD, Huang X, Zhang Y (2017) Genetic diversity in two threatened species in Vietnam: Taxus chinensis and Taxus wallichiana. J For Res 28(2):265–272

    CAS  Google Scholar 

  • Wen Y, Uchiyama K, Ueno S, Han W, Xie W, Tsumura Y (2018) Assessment of the genetic diversity and population structure of Maire yew (Taxus chinensis var. mairei) for conservation purposes. Can J For Res 48(5):589–598

    Google Scholar 

  • Whitehorn PR, Tinsley MC, Brown MJF et al (2011) Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proc R Soc B Biol Sci 278:1195–1202

    Google Scholar 

  • Zamani S, Khaksar G, Movahedi S, Talebi M, Tabatabaei B (2008) Genomic diversity among yew (Taxus baccata) genotypes of Iran revealed by random amplified polymorphism DNA markers. Int J Agric Biol 10(6):648–652

    CAS  Google Scholar 

  • Zhang DQ, Zhou N (2013) Genetic diversity and population structure of the endangered conifer Taxus wallichiana var. mairei (Taxaceae) revealed by Simple Sequence Repeat (SSR) markers. Biochem Syst Ecol 49:107–114

    CAS  Google Scholar 

  • Zhang XM, Gao LM, Möller M, Li DZ (2009) Molecular evidence for fragmentation among populations of Taxus wallichiana var. mairei, a highly endangered conifer in China. Can J For Res 39(4):755–764

    CAS  Google Scholar 

  • Zhu GP, Peterson AT (2017) Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biol Invasions 19(9):2519–2532

    Google Scholar 

  • Ziello C, Estrella N, Kostova M et al (2009) Influence of altitude on phenology of selected plant species in the Alpine region (1971–2000). Clim Res 39:227–234

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by MoEF & CC (Ministry of Environment and Forests & Climate Change), India under the Grant NMHS/SG-2016/011. Aasim Majeed acknowledges CSIR New Delhi for their financial assistance during the PhD programme. The authors are grateful to the associate editor and the reviewers for their constructive criticism and valuable suggestion, which proved useful in rectifying and refining this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PB conceived and organized the study. AM carried out sampling, wet lab experiments, computational analysis and wrote the manuscript. AS participated in sampling, nucleic acid isolation and genotyping. PB further edited and finalized the manuscript. All authors have carefully read and approved the manuscript.

Corresponding author

Correspondence to Pankaj Bhardwaj.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, A., Singh, A. & Bhardwaj, P. Transcribing molecular and climatic data into conservation management for the Himalayan endangered species, Taxus contorta (Griff.). Conserv Genet 22, 53–66 (2021). https://doi.org/10.1007/s10592-020-01319-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-020-01319-w

Keywords

Navigation