Skip to main content

Advertisement

Log in

Assessing genetic structure in a rare clonal eucalypt as a basis for augmentation and introduction translocations

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Genetics can provide information that is critical for planning translocations for conservation, such as levels of diversity and divergence of target and source populations. For clonal plants, assessing population characteristics (size, diversity, mortality, gene flow) that influence conservation values also requires identification of different genetic individuals. We used 12 microsatellite markers to guide germplasm source recommendations for augmentation and introduction translocations to conserve the critically endangered Eucalyptus cuprea that occurs in fragmented populations in the semi-arid shrublands of Western Australia. Ramet clumps with identical multilocus genotypes were identified in all populations but clonal richness (R = 0 − 0.86) and heterogeneity (D = 0 − 0.98) varied among populations. Genetic diversity was low to moderate in all populations (mean H o = 0.61, mean A = 3.78) and did not differ significantly between localities. There was evidence of inbreeding in some populations but outcrossing (t m = 0.495) in the small number of families available for study (N = 4) and genotypic diversity of the larger extant populations suggest the generation of novel genotypes is a component of the reproductive strategy. Most diversity was within populations and differentiation among populations was moderate (F ST = 0.100) suggesting mixing of source population for translocation is unlikely to lead to outbreeding depression. Principal Co-ordinate and Bayesian analyses indicated the Northern population is distinct from Central/Southern populations. We recommend use of mixed germplasm to conserve the moderate diversity characterising larger remnant populations and to enable the production of recombinants through sexual reproduction. But given seed availability and the distinction of the Northern population, an initial precautionary approach to a translocation proposed for south of the geographical range may be to source germplasm from the Central/Southern locality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Arnaud-Haond S, Belkhir K (2007) Genclone 1.0: a new program to analyse genetics data on clonal organisms. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139

    Article  CAS  PubMed  Google Scholar 

  • Bradbury D, Grayling PM, Macdonald B, Hankinson M, Byrne M (2015) Clonality, interspecific hybridisation and inbreeding in a rare mallee eucalypt, Eucalyptus absita (Myrtaceae), and implications for conservation. Conserv Genet (in press)

  • Breed MF, Steed MG, Otewell KM, Gardner MG, Lowe AJ (2013) Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conserv Genet 14:1–10

    Article  Google Scholar 

  • Broadhurst LM (2011) Genetic diversity and population genetic structure in fragmented Allocasuarina verticillata (Allocasuarinaceae)—implications for restoration. Aust J Bot 59:770–780

    Google Scholar 

  • Broadhurst LM, Lowe A, Coates DJ, Cunningham SA, McDonald M, Vesk PA, Yates C (2008) Seed supply for broadscale restoration: maximising evolutionary potential. Evol Appl 1:587–597

    PubMed  PubMed Central  Google Scholar 

  • Brondani R, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterisation and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet 97:816–827

    Article  CAS  Google Scholar 

  • Byrne M (2008) Phylogeny, diversity and evolution of eucalypts. In: Sharma AK, Sharma A (eds) Plant Genome: Biodiversity and Evolution, vol 1E. Phanerogam- Angiosperm Oxford and IBH Publishing Company, New Delhi, pp 303–346

    Google Scholar 

  • Byrne M, Hopper SD (2008) Granite outcrops as ancient islands in old landscapes: evidence from the phylogeography and population genetics of Eucalyptus caesia in Western Australia. Biol J Linn Soc Lond 93:177–188

    Article  Google Scholar 

  • Byrne M, Marquez-Garcia MI, Uren T, Smith DS, Moran GF (1996) Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Aust J Bot 44:331–341

    Article  CAS  Google Scholar 

  • Byrne M, Macdonald B, Coates DJ (1999) Divergence in the chloroplast genome and nuclear rDNA of the rare Western Australian plant Lambertia orbifolia Gardner (Proteaceae). Mol Ecol 8:1789–1796

    Article  CAS  PubMed  Google Scholar 

  • Byrne M, Stone L, Millar MA (2011) Assessing genetic risk in revegetation. J Appl Ecol 48:1365–1373

    Article  Google Scholar 

  • Campagne P, Smouse PE, Varouchas G, Silvain JF, Leru B (2012) Comparing the van Oosterhout and Chybicki-Burczyk methods of estimating null allele frequencies for inbred populations. Mol Ecol Res 126:975–982

    Article  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  CAS  PubMed  Google Scholar 

  • Chybicki IJ, Burczyk J (2010) Nm+: software implementing parentage-based models for estimating gene dispersal and mating patterns in plants. Mol Ecol Res 10:1071–1075

    Article  CAS  Google Scholar 

  • Coates DJ, Sampson JF, Yates CJ  (2007)  Plant mating systems and assessing population persistence in fragmented landscapes.  Aust J Bot 55:239–249

    Article  Google Scholar 

  • Coates DJ, Mcarthur SL, Byrne M (2015) Significant genetic diversity loss following pathogen driven population extinction in the rare endemic Banksia brownii (Proteaceae). Biol Conserv (in review)

  • Debenham C (1970) The Language of Botany. The Society for Growing Australian Plants, Sydney

    Google Scholar 

  • Department of Parks and Wildlife (1998–2013) Department of Parks and Wildlife, Rare Flora Report Forms; Eucalyptus cuprea. Species and Communities Branch, Kensington

  • Dharmarajan G, Beatty WS, Rhodes OE (2013) Heterozygote deficiencies caused by a Wahlund effect: dispelling unfounded expectations. J Wildl Manag 77:226–234

    Article  Google Scholar 

  • Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Eckert CG (2002) The loss of sex in clonal plants. Evol Ecol 15:501–520

    Article  Google Scholar 

  • Ellstrand NC, Roose ML (1987) Patterns of genotypic diversity in clonal plant-species. Am J Bot 74:123–131

    Article  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MD, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Gao L, Tang S, Zhuge L, Nie M, Zhu Z et al (2012) Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta, China. PLoS One 7:e43334. doi:10.1371/journal.pone.0043334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godefroid S, Piazza C, Rossi G et al (2011) How successful are plant species reintroductions? Biol Conserv 144:672–682

    Article  Google Scholar 

  • Griffin AR, Moran GF, Fripp YJ (1987) Preferential outcrossing in Eucalyptus regnans F. Muell Aust J Bot 35:465–475

    Article  Google Scholar 

  • Holmes GD, James EA, Hoffmann AA  (2008)  Limitations to reproductive output and genetic rescue in populations of the rare shrub Grevillea repens (Proteaceae).  Ann Bot  102:1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes GD, James EA, Hoffmann AA (2009) Divergent levels of genetic variation and ploidy among populations of the rare shrub, Grevillea repens (Proteaceae). Conserv Genet 10:827–837

    Article  CAS  Google Scholar 

  • IUCN (1987) IUCN position statement on translocation of living organisms: introductions, re-introductions and re-stocking

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • James SH, Kennington WJ (1993) Selection against homozygotes and resource allocation in the mating system of Eucalyptus camaldulensis Dehnh. Aust J Bot 41:381–391

    Article  Google Scholar 

  • Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kennington WJ, James SH (1997a) The effect of small population size on the mating system of a rare clonal mallee. Eucalyptus argutifolia Heredity 78:252–260

    Article  Google Scholar 

  • Kennington WJ, James SH (1997b) Contrasting patterns of clonality in two closely related mallee species from Western Australia, Eucalyptus argutifolia and E. obtusiflora (Myrtaceae). Aust J Bot 45:679–689

    Article  Google Scholar 

  • Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS One 3:e4010

    Article  PubMed  PubMed Central  Google Scholar 

  • Liemu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: F ST and related measures. Mol Ecol Res 11:5–18

    Article  Google Scholar 

  • Mijangos JL, Pacioni C, Spencer PB, Craig MD (2015) Contribution of genetics to ecological restoration. Mol Ecol 24:22–37

    Article  PubMed  Google Scholar 

  • Miller MA, Byrne M, Coates DJ (2010) The maintenance of disparate levels of clonality, genetic diversity and genetic differentiation in disjunct subspecies of the rare Banksia ionthocarpa. Mol Ecol 19:4217–4227

    Article  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J et al (2014) The genome of Eucalyptus grandis. Nature 510:356–362

    CAS  PubMed  Google Scholar 

  • Nicolle D (2006) A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus-Myrtaceae), with special reference to obligate seeders. Aust J Bot 54:391–407

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) genelex 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley- Interscience, New York

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure from multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prober SM, Byrne M, McLean E, Steane DA, Potts BM, Vaillancourt RE, Stock W (2015) Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Front Ecol Evol (in review)

  • Pryor LD (1951) Controlled pollination of Eucalyptus. Proc Linn Soc NSW 76:135–139

    Google Scholar 

  • Putman AI, Carbone I (2014) Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 4:4399–4428

    PubMed  PubMed Central  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Reynolds LK, McGlathery KJ, Waycott M (2012) Genetic diversity enhances restoration success by augmenting ecosystem services. PLoS One 7:e38397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228

    Article  PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Severns PM, Liston A, Wilson MV (2011) Habitat fragmentation, genetic diversity, and inbreeding depression in a threatened grassland legume: is genetic rescue necessary? Conserv Genet 12:881–893

    Article  Google Scholar 

  • Sgrò CM, Lowe AJ, Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvertown J (2008) The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. Int J Plant Sci 169:157–168

    Article  Google Scholar 

  • Smith S, Hughes J, Wardell-Johnson G (2003) High population differentiation and extensive clonality in a rare mallee eucalypt: Eucalyptus curtisii. Conserv Genet 4:289–300

    Article  CAS  Google Scholar 

  • Steane DA, Vaillancourt RE, Russell J et al (2001) Development and characterisation of microsatellite loci in Eucalyptus globulus (Myrtaceae). Silvae Genet 50:89–91

    Google Scholar 

  • Thomas E, Jalonen R, Loo J, Boshier D, Gallo L, Cavers S, Bordács Smith P, Bozzano M (2014) Genetic considerations in ecosystem restoration using native tree species. Forest Ecol Manag 333:66–75

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Weeks AR, Sgro CM, Young AG et al (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl 4:709–725

    Article  PubMed  PubMed Central  Google Scholar 

  • Yates CJ, Hobbs RJ (1997) Temperate eucalypt woodlands: a review of their status, processes threatening their persistence and techniques for restoration. Aust J Bot 45:949–973

    Article  Google Scholar 

  • Young AG, Hill JH, Murray BG, Peakall R (2002) Breeding system, genetic diversity and clonal structure in the sub-alpine forb Rutidosis leiolepis F. Muell. (Asteraceae). Biol Conserv 106:71–78

    Article  Google Scholar 

Download references

Acknowledgments

We thank Gemma Phelan for collecting samples from some populations, and landholders for permission to collect on their property.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane F. Sampson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampson, J.F., Byrne, M. Assessing genetic structure in a rare clonal eucalypt as a basis for augmentation and introduction translocations. Conserv Genet 17, 293–304 (2016). https://doi.org/10.1007/s10592-015-0781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0781-6

Keywords

Navigation