Skip to main content

Advertisement

Log in

Genetic diversity and no evidences of recent hybridization in the endemic Italian hare (Lepus corsicanus)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Fragmented populations of the endemic Italian hare (Lepus corsicanus) survive at low density in central and southern Italy, in Sicily and Corsica, where the species was introduced in the sixteenth century. Fragmentation and hybridization with widespread brown hares (L. europaeus), which were introduced outside their natural ranges, may threaten the survival and genetic integrity of the Italian hare. With the exception of a few cases of hybrids identified in Corsica, hybridization was not documented in the Italian hare. In this study, we aimed to assess the genetic diversity in the Italian hare populations and identify possible interspecific hybrids with the brown hare. We genotyped 458 samples belonging to the four species of Lepus distributed in Italy (the mountain hare, the brown hare, the Sardinian hare and the Italian hare) using maternal and biparental markers (mtDNA control-region, 13 autosomal microsatellites, 9 autosomal SNPs). Results confirmed sharp interspecific genetic distinctions among the four species. We did not find interspecific hybrids in Italian hares, with the exception of two cases of L. corsicanus mtDNA introgression in two L. europaeus individuals. The Italian hares in Sicily are genetically distinct, in consequence of long-lasting isolation. Peninsular populations show instances of recent genetic diversification in consequence of anthropogenic fragmentation. Our findings point to consider the conservation of the Sicilian population as a priority, discouraging introductions of exotic hares into the island. Habitat restoration and a net of ecological corridors could help the survival and expansion of threatened L. corsicanus populations in peninsular Italy. Massive releases of brown hares for hunting purposes should be avoided in areas of sympatry with the Italian hares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acevedo P, Melo-Ferreira J, Real R, Alves PC (2014) Evidence for niche similarities in the allopatric sister species Lepus castroviejoi and Lepus corsicanus. J Biogeogr 41(5):977–986

    Article  Google Scholar 

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problem with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622

    Article  Google Scholar 

  • Alves PC, Ferrand N, Suchentrunk F, Harris DJ (2003) Ancient introgression of Lepus timidus mtDNA into L. granatensis and L. europaeus in the Iberian Peninsula. Mol Phylogenet Evol 27(1):70–80

    Article  CAS  PubMed  Google Scholar 

  • Alves PC, Melo-Ferreira J, Branco M et al (2008a) Evidence for genetic similarity of two allopatric European hares (Lepus corsicanus and L. castroviejoi) inferred from nuclear DNA sequences. Mol Phylogenet Evol 46:1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Alves PC, Melo-Ferreira J, Freitas H, Boursot P (2008b) The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus. Philos Trans R Soc B Biol Sci 363:2831–2839

    Article  Google Scholar 

  • Angelici FM, Randi E, Riga F, Trocchi V (2008). Lepus corsicanus. The IUCN Red List of threatened species. Version 2014.1. http://www.iucnredlist.org

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, Oxford

    Google Scholar 

  • Canu A, Suchentrunk F, Cossu A, Foddai R, Iacolina L, Ben Slimen H et al (2012) Differentiation under isolation and genetic structure of Sardinian hares as revealed by craniometric analysis, mitochondrial DNA and microsatellites. J Zool Syst Evol Res 50(4):328–337

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772

    Article  CAS  PubMed  Google Scholar 

  • de Winton WE (1898) On the hares of Western Europe and North Africa. Ann Mag Nat Hist Lond 1:149–158

    Google Scholar 

  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) GENEIOUS v5.4. Available from. http://www.geneious.com/

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ellerman JR, Morrison-Scott TCS (1951) Checklist of Palaearctic and Indian mammals (1758–1946). British Museum (Natural History), London

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) ARLEQUIN v3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed Central  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fløjgaard C, Normand S, Skov F, Svenning JC (2011) Deconstructing the mammal species richness pattern in Europe—towards an understanding of the relative importance of climate, biogeographic history, habitat heterogeneity and humans. Glob Ecol Biogeogr 20:218–230

    Article  Google Scholar 

  • Gerloff U, Schlotterer C, Rassmann K et al (1995) Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild living Bonobos (Pan paniscus). Mol Ecol 4:515–518

    Article  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamill RM, Doyle D, Duke EK (2006) Spatial patterns of genetic diversity across European subspecies of the mountain hare, Lepus timidus L. Heredity 97:355–365

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Chakraborty R (1993) Estimation of genetic distance and coefficient of gene diversity from single-probe multilocus DNA fingerprinting data. Mol Biol Evol 11:120–127

    Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Kryger U, Robinson TJ, Bloomer P (2002) Isolation and characterization of six polymorphic microsatellite loci in South African hares (Lepus saxatilis F. Cuvier, 1823 and Lepus capensis Linnaeus, 1758). Mol Ecol Notes 2:422–424

    Article  CAS  Google Scholar 

  • Kvikstad EM, Duret L (2014) Strong heterogeneity in mutation rate causes misleading hallmarks of natural selection on indel mutations in the human genome. Mol Biol Evol 31(1):23–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Langella O (2002) Populations, a free population genetic software. http://www.pge.cnrs-gif.fr/bioinfo/populations

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioninformatics 25:1451–1452

    Article  CAS  Google Scholar 

  • Lo Valvo M, Barera A, Seminara S (1997) Biometria e status della lepre appenninica (Lepus corsicanus, de Winton 1898) in Sicilia. Nat Sicil IV:67–74

    Google Scholar 

  • Longmire JL, Maltbie M, Baker RJ (1997) Use of ‘‘lysis buffer’’ in DNA isolation and its implication for museum collections. Occas Pap Mus Texas Tech Univ 163:1–4

    Google Scholar 

  • Lopez Martinez N (1980) Les lagomorphes (Mammalia) du Pleistocene superieur de Jaurens. Nouv Arch Mus Hist Nat Lyon 18:5–16

    Google Scholar 

  • Melo-Ferreira J, Boursot P, Suchentrunk F, Ferrand N, Alves PC (2005) Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Mol Ecol 14:2459–2464

    Article  CAS  PubMed  Google Scholar 

  • Melo-Ferreira J, Boursot P, Randi E et al (2007) The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula. Mol Ecol 16:605–618

    Article  CAS  PubMed  Google Scholar 

  • Melo-Ferreira J, Alves PC, Freitas H, Ferrand N, Boursot P (2009) The genomic legacy from the extinct Lepus timidus to the three hare species of Iberia: contrast between mtDNA, sex chromosomes and autosomes. Mol Ecol 18:2643–2658

    Article  CAS  PubMed  Google Scholar 

  • Melo-Ferreira J, Boursot P, Carneiro M, Esteves PJ, Farelo L, Alves PC (2012) Recurrent introgression of mitochondrial DNA among hares (Lepus spp.) revealed by species–tree inference and coalescent simulations. Syst Biol 61:367–381

    Article  CAS  PubMed  Google Scholar 

  • Miller GS (1912) Catalogue of the mammals of western Europe. British Museum, London

    Google Scholar 

  • Montgomery SB, Goode DL, Kvikstad E, Albers CA, Zhang ZD, Mu XJ et al (2013) The origin, evolution, and functional impact of short insertion–deletion variants identified in 179 human genomes. Genome Res 23(5):749–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mougel F, Mounolou JC, Monnerot M (1997) Nine polymorphic microsatellite loci in the rabbit, Oryctolagus cuniculus. Anim Genet 28:58–71

    Article  CAS  PubMed  Google Scholar 

  • Palacios F (1996) Systematics of the indigenous hares of Italy traditionally identified as Lepus europaeus Pallas, 1778 (Mammalia: Leporidae). Bonn Zool Beitr 56:59–91

    Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pierpaoli M, Riga F, Trocchi V, Randi E (1999) Species distinction and evolutionary relationships of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing. Mol Ecol 8:1805–1817

    Article  CAS  PubMed  Google Scholar 

  • Pietri C, Alves PC, Melo-Ferreira J (2011) Hares in Corsica: high prevalence of Lepus corsicanus and hybridization with introduced L. europaeus and L. granatensis. Eur J Wildl Res 57:313–321

    Article  Google Scholar 

  • Pritchard JK, Wen W (2004) Documentation for structure software: version 2. http://pritch.bsd.uchicago.edu

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Randi E (2007) Phylogeography of south European mammals. Phylogeography of southern European refugia. Springer, Dordrecht, pp 101–126

    Chapter  Google Scholar 

  • Riga F, Trocchi V, Randi E, Toso S (1998) What, if anything, is the Italian hare? In: Reig S (ed) Euro-American mammal congress, Abstracts, p 97, Universidad de Santiago de Compostela, 19–24 July 1998

  • Riga F, Trocchi V, Randi E, Toso S (2001) Morphometric differentiation between the Italian hare (Lepus corsicanus DeWinton, 1898) and the European brown hare (Lepus europaeus Pallas 1778). J Zool Lond 253:241–252

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Smith AT (2008) Conservation of endangered lagomorphs. In: Alves PC, Ferrand N, Hackländer K (eds) Lagomorph biology: evolution, ecology and conservation. Springer, Berlin, pp 297–315

    Chapter  Google Scholar 

  • Surridge AK, Bell DJ, Rico C, Hewitt GM (1997) Polymorphic microsatellite loci in the European rabbit (Oryctolagus cuniculus) are also amplified in other lagomorph species. Anim Genet 28:302–305

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP. Phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer Associates, Sunderland

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) Mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thulin CG (2003) The distribution of mountain hares Lepus timidus in Europe: a challenge from brown hares L. europaeus? Mamm Rev 33:29–42

    Article  Google Scholar 

  • Thulin CG, Jaarola M, Tegelström H (1997) The occurrence of mountain hare mitochondrial DNA in wild brown hares. Mol Ecol 6(5):463–467

    Article  CAS  PubMed  Google Scholar 

  • Thulin CG, Fang M, Averianov AO (2006) Introgression from Lepus europaeus to L. timidus in Russia revealed by mitochondrial single nucleotide polymorphisms and nuclear microsatellites. Hereditas 143:68–76

    Article  PubMed  Google Scholar 

  • Toschi A (1965) Fauna d’Italia. VII. Mammalia (Lagomorpha-Rodentia-Carnivora-Artiodactyla-Cetacea). Calderini, Bologna

  • Trocchi V, Riga F (2001) Piano d’azione nazionale per la Lepre italica (Lepus corsicanus). Quaderni di Conservazione della Natura 9, Ministero dell’Ambiente—Istituto Nazionale per la Fauna Selvatica

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538

    Article  Google Scholar 

  • Vigne JD (1992) Zooarchaeology and the biogeographical history of the mammals of Corsica and Sardinia since the last ice age. Mamm Rev 2:87–89

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weiss S, Ferrand N (2007) Phylogeography of Southern European Refugia: evolutionary perspectives on the origins and conservation of European biodiversity. Springer, Dordrecht

    Book  Google Scholar 

  • Wibbelt G, Frölich G (2005) Infectious diseases in european brown hare (Lepus europaeus). Wildl Biol Pract 1(1):86–93

    Article  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regards to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Wu C, Wu J, Bunch TD, Li Q, Wang Y, Zhang Y (2005) Molecular phylogenetics and biogeography of Lepus in Eastern Asia based on mitochondrial DNA sequences. Mol Phylogenet Evol 37:45–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge all collaborators who participated in sampling: first of all Valter Trocchi and Francesco Riga (Istituto Superiore per la Protezione e la Ricerca Ambientale—ISPRA), Egidio Mallia (Parco Regionale di Gallipoli Cognato), Giorgia Romeo (Provincia di Grosseto), Christian Pietri (Fédération Départementale des Chasseurs de Haute-Corse-FDCHC), Alberto Meriggi (Università di Pavia) and all the people who helped us in collecting samples. Special thanks go to the Province of Grosseto for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mengoni.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengoni, C., Mucci, N. & Randi, E. Genetic diversity and no evidences of recent hybridization in the endemic Italian hare (Lepus corsicanus). Conserv Genet 16, 477–489 (2015). https://doi.org/10.1007/s10592-014-0674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0674-0

Keywords

Navigation