Skip to main content
Log in

Genetic monitoring and effects of stocking practices on small Cyprinus carpio populations

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The ability to detect genetic differences both in space and time is crucial for conserving genetic variation. It can reveal genetic diversity and genetic composition changes of declining native populations that are supported through stocking with captive bred individuals. The present study was designed to analyse the temporal stability of a declining common carp (Cyprinus carpio) population from Lake Volvi (North Greece). Polymorphism was evaluated using seven microsatellite loci at two sampling time points (separated by 12 years). The genetic variability of four additional populations (from two rivers and two lakes) in Northern Greece was also investigated for comparison. Heterozygosity values (0.692–0.868) and allelic richness (8.530–11.148) were high for all studied populations and comparable to other European populations. However, the analysis of temporal common carp samples from Lake Volvi revealed a significant change in their genetic composition and admixture analysis demonstrated significant introgression of stocked individuals into the native population. Both temporal and point estimate methods revealed low effective size (Ne = 61–171.3) for this population, possibly a result of an ancient genetic bottleneck that led to population decline and/or recent anthropogenic interventions. This low Ne has rendered the native population vulnerable to alteration of its genetic composition. Our study demonstrates that enhancement programs should be applied cautiously, especially for small populations. Moreover, it underlines the need for temporal analyses, which may contribute to the evaluation of previous management policies and to future decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartfai R, Egedi S, Yue GH, Kovacs B, Urbanyi B, Tamas G, Horvath L, Orban L (2003) Genetic analysis of two common carp brood stocks by RAPD and microsatellite markers. Aquaculture 219:157–167

    Article  CAS  Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029

    PubMed  CAS  Google Scholar 

  • Berthier P, Beaumont MA, Cournet JM, Luikart G (2002) Likelihood-based estimation of the effective population using temporal changes in allele frequencies: genealogical approach. Genetics 160:741–751

    PubMed  CAS  Google Scholar 

  • Bourke PB, Frantz AC, Lavers CP, Davison A, Dawson DA, Burke TA (2010) Genetic signatures of population change in the British golden eagle (Aquila chrysaetos). Conserv Genet 11:1837–1846

    Article  Google Scholar 

  • Bradford DF, Cooper SD, Jenkins TM Jr, Kratz K, Sarnelle O, Brown AD (1998) Influences of natural acidity and introduced fish on faunal assemblages in California alpine lakes. Can J Fish Aquat Sci 55:2478–2491

    Article  Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455

    Article  Google Scholar 

  • Carlsson J, Olsén HK, Nilsson J, Øverli Ø, Stabell OB (1999) Microsatellites reveal fine-scale genetic structure in stream-living brown trout. J Fish Biol 55:1290–1303

    Article  CAS  Google Scholar 

  • Conover DO, Munch SB (2002) Sustaining fisheries yields over evolutionary time scales. Science 297:94–96

    Article  PubMed  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  • Crooijmans RP, Bierbooms MA, Komen J, Van Der Poel JJ, Groenen MAM (1997) Microsatellite markers in common carp (Cyprinus carpio L.). Anim Genet 28:129–134

    Article  CAS  Google Scholar 

  • Dafis S, Papastergiadou E, Georghiou K, Babalonas D, Georgiadis T, Papageorgiou M, Lazaridou T, Tsiaoussi (1996) Directive 92/43/EEC. The Greek habitat project NATURA 2000: An overview life contract B4-3200/94/756, Comission of the European Communities DG XI. The Goulandris Natural History Museum-Greek Biotope Wetland Centre, Athens, p 917

  • David L, Jinggui F, Palanisamy R, Hillel J, Lavi U (2001) Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite markers. Mol Genet Genomics 266:353–362

    Article  PubMed  CAS  Google Scholar 

  • Desvignes JF, Laroche J, Durand JD, Bouvet Y (2001) Genetic variability in reared stocks of common carp (Cyprinus carpio L.) based on allozymes and microsatellites. Aquaculture 194:291–301

    Article  CAS  Google Scholar 

  • Economidis PS (1991) Check list of freshwater fishes of Greece. Recent status of threats and protection. Hellenic Society for the Protection of Nature, Athens

    Google Scholar 

  • Economidis PS, Dimitriou E, Pagoni R, Michaloudi E, Natsis L (2000) Introduced and translocated fish species in the inland water of Greece. Fish Manag Ecol 7:239–250

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRCUTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Flajšhans M, Hulata G (2006) Genetic effects of domestication, culture and breeding of fish and shellfish, and their impacts on wild populations. Common carp-Cyprinus carpio. In: Svåsand T, Crosetti D, García-Vázquez E, Verspoor E (eds) Evaluation of genetic impact of aquaculture activities on native populations: a European network. GENIMPACT Final Report (EU contract n. RICA-CT-2005-022802), pp 32–39

  • Franklin IR (1980) Evolutionary change in small populations. In: Soule M, Wilcox B (eds) Conservation biology: an evolutionary–ecological perspective. Sinauer, Sunderland, pp 135–149

    Google Scholar 

  • Froufe E, Magyary I, Lehoczky I, Weiss S (2002) MtDNA sequence data supports an Asian ancestry and single introduction of the common carp into the Danube Basin. J Fish Biol 61:301–304

    Article  CAS  Google Scholar 

  • Garant D, Dodson JJ, Bernatchez L (2000) Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar L.). Mol Ecol 9:615–628

    Article  PubMed  CAS  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulations using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3)

  • Hansen MM, Loeschcke V (1996) Temporal variation in mitochondrial DNA haplotype frequencies in a brown trout (Salmo trutta L.) population that shows stability in nuclear allele frequencies. Evolution 50:454–457

    Article  Google Scholar 

  • Hansen MM, Fraser DJ, Meier K, Mensberg KL (2009) Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines. Mol Ecol 18:2549–2562

    Article  PubMed  CAS  Google Scholar 

  • Haynes GD (2009) Population genetics of common carp (Cyprinus carpio L.) in the Murray-Darling Basin. In Faculty of Veterinary Science. University of Sydney, Sydney

    Google Scholar 

  • Haynes GD, Gilligan DM, Grewe P, Moran C, Nicholas FW (2010) Population genetics of invasive common carp Cyprinus carpio L. in coastal drainages in eastern Australia. J Fish Biol 77:1150–1157

    Article  PubMed  CAS  Google Scholar 

  • Heath DD, Busch C, Kelly J, Atagi DY (2002) Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Mol Ecol 11:197–214

    Article  PubMed  CAS  Google Scholar 

  • Heller R, Lorenzen ED, Okello JBA, Masembe C, Siegismund HR (2008) Mid-holocene decline in African buffalos inferred from Bayesian coalescent-based analyses of microsatellites and mitochondrial DNA. Mol Ecol 17:4845–4858

    Article  PubMed  CAS  Google Scholar 

  • Hillis DM, Moritz C, Mable BK (1996) Molecular systematics. Sinauer Associates, Sutherland

    Google Scholar 

  • Hindar K, Ryman N, Utter F (1991) Genetic effects of cultured fish on natural fish populations. Can J Fish Aquat Sci 48:945–957

    Article  Google Scholar 

  • Horvath L, Tamas G, Seagrave C (1992) Carp and Pond Fish Culture. Blackwell Scientific Publications Ltd, Oxford, p 158

    Google Scholar 

  • Imsiridou A, Triantafyllidis A, Baxevanis AD, Triantaphyllidis C (2009) Genetic characterization of common carp (Cyprinus carpio L.) populations from Greece using mitochondrial DNA sequences. Biologia 64:1–5

    Article  Google Scholar 

  • Jakobsson M, Rosenberg N (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jorde PE, Ryman N (1995) Temporal allele frequency change and estimation of effective size in populations with overlapping generations. Genetics 139:1077–1090

    PubMed  CAS  Google Scholar 

  • Jorde PE, Ryman N (1996) Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change in allele frequencies. Genetics 143:1369–1381

    PubMed  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1006–1099

    Article  Google Scholar 

  • Knapp RA, Matthews KR (2000) Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conserv Biol 14:428–438

    Article  Google Scholar 

  • Koehn J, Brumley B, Gehrke P (2000) Managing the Impacts of Carp. Bureau of Rural Sciences (Department of Agriculture, Fisheries and Forestry), Canberra, Australia

    Google Scholar 

  • Kohlmann K, Gross R, Murakaeva A, Kersten P (2003) Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA markers. Aquat Living Resour 16:421–431

    Article  Google Scholar 

  • Kohlmann K, Gross R, Murakaeva A (2004) Diversity of common carp (Cyprinus carpio L.) genetic resources. Berichte des IGB 22:143–153

    Google Scholar 

  • Kohlmann K, Kersten P, Flajšhans M (2005) Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture 247:253–266

    Article  CAS  Google Scholar 

  • Laikre L, Järvi T, Johansson L, Palm S, Rubin JF, Glismater CE, Landergen P, Ryman N (2002) Spatial and temporal population structure of sea trout (Salmo trutta) at the island of Gotland, Sweden, delineated from mitochondrial DNA. J Fish Biol 60:49–71

    Article  CAS  Google Scholar 

  • Laikre L, Larsson LC, Palmé A, Charlier J, Josefsson M, Ryman N (2008) Potentials for monitoring gene level biodiversity: using Sweden as an example. Biodivers Conserv 17:893–910

    Article  Google Scholar 

  • Larsen PF, Hansen MM, Nielsen EE, Jensen LF, Loeschcke V (2005) Stocking impact and temporal stability of genetic composition in a brackish northern pike population (Esox lucius L.), assessed using microsatellite DNA analysis of historical and contemporary samples. Heredity 95:136–143

    Article  PubMed  CAS  Google Scholar 

  • Larsson LC, Laikre L, André C, Dahlgre TG, Ryman N (2010) Temporally stable genetic structure of heavily exploited Atlantic herring (Clupea harengus) is Swedish waters. Heredity 104:40–51

    Article  PubMed  CAS  Google Scholar 

  • Li D, Kang D, Yin Q, Sun X, Liang L (2007) Microsatellite DNA marker analysis of genetic diversity in wild common carp (Cyprinus carpio L.) populations. J Genet Genomics 34:984–993

    Article  PubMed  CAS  Google Scholar 

  • Lucentini L, Palomba A, Gigliarelli L, Sgaravizzi G, Lancioni H, Lanfaloni L (2009) Temporal changes and effective population size of an Italian isolated and supportive breeding managed northern pike (Esox lucius) population. Fish Res 96:139–147

    Article  Google Scholar 

  • Ludanny RI, Chrisanfova GG, Prizenko VK, Bogeruk AK, Semyenova SK (2010) Polymorphism of microsatellite markers in Russian common carp (Cyprinus carpio L.) breeds. Rus J Genetics 46:572–577

    Article  CAS  Google Scholar 

  • Luikart G, England PR (1999) Statistical analysis of microsatellite DNA data. Trends Ecol Evol 14:253–256

    Article  PubMed  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet J-M, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:236–247

    Article  Google Scholar 

  • Mabuchi K, Miya M, Senou H, Suzuki T, Nishida M (2006) Complete mitochondrial DNA sequence of the Lake Biwa wild strain of common carp (Cyprinus carpio L.): further evidence for an ancient origin. Aquaculture 257:68–77

    Article  CAS  Google Scholar 

  • Memis D, Kohlmann K (2006) Genetic characterization of wild common carp (Cyprinus carpio L.) from Turkey. Aquaculture 258:257–262

    Article  CAS  Google Scholar 

  • Nielsen EE, Hansen MM, Loeschcke V (1999) Genetic variation in time and space: microsatellite analysis of extinct and extant populations of Atlantic salmon. Evolution 53:261–268

    Article  Google Scholar 

  • Østergaard S, Hansen MM, Loeschcke V, Nielsen EE (2003) Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol Ecol 12:3123–3135

    Article  PubMed  Google Scholar 

  • Peel D, Ovenden JR, Peel SL (2004) NeESTIMATOR: Software for estimating effective population size, version 1.3. Queensland Government, Department of Primary Industries and Fisheries, Brisbane

    Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer programm fro detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for windows and linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Ryman N, Laikre L (1991) Effects of supportive breeding on the genetically effective population size. Conserv Biol 5:325–329

    Article  Google Scholar 

  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Res 6:600–602

    Google Scholar 

  • Shrimpton JM, Heath DD (2003) Census versus effective population size in chinook salmon: large- and small-scale environmental perturbation effects. Mol Ecol 12:2571–2583

    Article  PubMed  CAS  Google Scholar 

  • Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchial Bayesian model. Evolution 56:154–166

    PubMed  CAS  Google Scholar 

  • Swatdipong A, Primmer CR, Vasemagi A (2010) Historical and recent genetic bottlenecks in European grayling, Thymallus thymallus. Conserv Genet 11:272–279

    Article  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart GH, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Res 8:299–301

    Article  Google Scholar 

  • Tessier S, Bernatchez L (1999) Stability of populations structure and gene diversity across generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L.). Mol Ecol 8:169–179

    Article  Google Scholar 

  • Thai BT, Burridge CP, Austin CM (2007) Genetic diversity of common carp (Cyprinus carpio L.) in Vietnam using four microsatellite loci. Aquaculture 269:174–186

    Article  CAS  Google Scholar 

  • Triantafyllidis A, Krieg F, Cottin C, Abatzopoulos TJ, Triantaphyllidis C, Guyomard R (2002a) Genetic structure and phylogeography of European catfish (Silurus glanis) populations. Mol Ecol 11:1039–1055

    Article  PubMed  CAS  Google Scholar 

  • Triantafyllidis Α, Abatzopoulos TJ, Leonardos J, Guyomard R (2002b) Microsatellite analysis of the genetic population structure of native and translocated Aristotle’s catfish (Silurus aristotelis). Aquat Living Resour 15:351–359

    Article  Google Scholar 

  • Tringali MD, Bert M (1998) Risk to genetic effective population size should be an important consideration in fish stock-enhancement programs. Bull Mar Sci 62:641–659

    Google Scholar 

  • Tsipas G, Tsiamis G, Vidalis K, Bourtzis K (2009) Genetic differentiation among Greek lake populations of Carassius gibelio and Cyprinus carpio carpio. Genetica 136:491–500

    Article  PubMed  Google Scholar 

  • Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446

    PubMed  CAS  Google Scholar 

  • Waples RS (1990) Conservation genetics of Pacific salmon. III. Estimating effective population size. J Hered 81:277–289

    Google Scholar 

  • Waples RS (1998a) Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Article  Google Scholar 

  • Waples RS (1998b) A generalized approach fro estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391

    Google Scholar 

  • Yu-San H, Yu-Liang S, Yi-Fen L, I-Chiu L, Kang-Ning S, Wann-Nian T (2008) Temporal analysis of population genetic composition in the overexploited Japanese eel Anguilla japonica. Mar Biol 155:613–621

    Article  Google Scholar 

  • Zhou J, Wu Q, Wang Z, Ye Y (2004) Genetic variation analysis within and among six varieties of common carp (Cyprinus carp L.) in China using microsatellite markers. Rus J Genet 40:1144–1148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank local fishermen for their help with sampling. We also thank the editor and four anonymous reviewers for their constructive comments. This project was financially supported by the Greek Ministry of Rural Development and Food.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Triantafyllidis.

Additional information

Nikoleta Karaiskou and Maria Lappa contributed equally for this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaiskou, N., Lappa, M., Kalomoiris, S. et al. Genetic monitoring and effects of stocking practices on small Cyprinus carpio populations. Conserv Genet 12, 1299–1311 (2011). https://doi.org/10.1007/s10592-011-0231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0231-z

Keywords

Navigation