Skip to main content
Log in

Local convergence of quasi-Newton methods under metric regularity

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider quasi-Newton methods for generalized equations in Banach spaces under metric regularity and give a sufficient condition for q-linear convergence. Then we show that the well-known Broyden update satisfies this sufficient condition in Hilbert spaces. We also establish various modes of q-superlinear convergence of the Broyden update under strong metric subregularity, metric regularity and strong metric regularity. In particular, we show that the Broyden update applied to a generalized equation in Hilbert spaces satisfies the Dennis–Moré condition for q-superlinear convergence. Simple numerical examples illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Argyros, I.K., Cho, Y.J., Hilout, S.: Numerical Methods for Equations and Its Applications. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  3. Benahmed, B., Mokhtar-Kharroubi, H., Malafosse, B., Yassine, A.: Quasi-Newton methods in infinite-dimensional spaces and application to matrix equations. J. Glob. Optim. 49, 365–379 (2011)

    Article  MATH  Google Scholar 

  4. Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29, 161–186 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dennis, J.E. Jr., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28, 549–560 (1974)

    Article  MATH  Google Scholar 

  6. Dontchev, A.L.: Characterizations of Lipschitz stability in optimization. In: Recent Developments in Well-Posed Variational Problems, pp. 96–116. Kluwer Academic, Boston (1995)

    Google Scholar 

  7. Dontchev, A.L.: Local convergence of the Newton method for generalized equation. C. R. Math. Acad. Sci. Paris, Sér. I 322, 327–331 (1996)

    MATH  MathSciNet  Google Scholar 

  8. Dontchev, A.L.: Generalizations of the Dennis–Moré theorem. SIAM J. Optim. 22, 821–830 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dontchev, A.L., Hager, W.W.: An inverse mapping theorem for set-valued maps. Proc. Am. Math. Soc. 121, 481–489 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. a View from Variational Analysis. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  11. Dontchev, A.L., Rockafellar, R.T.: Parametric stability of solutions in models of economic equilibrium. J. Convex Anal. 19, 975–997 (2012)

    MATH  MathSciNet  Google Scholar 

  12. Griewank, A.: The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert spaces. SIAM J. Numer. Anal. 24, 684–705 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Griewank, A.: Broyden updating, the good and the bad! Optimization stories. Doc. Math. 301–315 (2012)

  14. Grzegórski, S.M.: Orthogonal projections on convex sets for Newton-like methods. SIAM J. Numer. Anal. 22, 1208–1219 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hwang, D.M., Kelley, C.T.: Convergence of Broyden’s method in Banach spaces. SIAM J. Optim. 2, 505–532 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Josephy, N.H.: Newton’s method for generalized equations and the PIES energy model. Ph.D. Dissertation, Department of Industrial Engineering, University of Wisconsin-Madison (1979)

  17. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathematics, vol. 16. SIAM, Philadelphia (1995). With separately available software

    Book  MATH  Google Scholar 

  18. Kelley, C.T., Sachs, E.: A new proof of superlinear convergence for Broyden’s method in Hilbert space. SIAM J. Optim. 1, 146–150 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Kluwer Academic, Boston (2002)

    MATH  Google Scholar 

  20. Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford University Press, London (2004)

    Google Scholar 

  21. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sachs, E.W.: Convergence rates of quasi-Newton algorithms for some nonsmooth optimization problems. SIAM J. Control Optim. 23, 401–418 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sachs, E.W.: Broyden’s method in Hilbert space. Math. Program. 35, 71–82 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sun, W., Yuan, Y.-X.: Optimization Theory and Methods: Nonlinear Programming. Springer Optimization and Its Applications, vol. 1. Springer, New York (2006)

    Google Scholar 

  25. Wen-huan, Y.: A quasi-Newton method in infinite-dimensional spaces and its application for solving a parabolic inverse problem. J. Comput. Math. 16, 305–318 (1998)

    MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Dontchev.

Additional information

A. Belyakov was supported by the Austrian Science Foundation (FWF) under grant No P 24125-N13.

A.L. Dontchev was supported by NSF Grant DMS 1008341 through the University of Michigan.

M. López was supported by MINECO of Spain, Grant MTM2011-29064-C03-02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aragón Artacho, F.J., Belyakov, A., Dontchev, A.L. et al. Local convergence of quasi-Newton methods under metric regularity. Comput Optim Appl 58, 225–247 (2014). https://doi.org/10.1007/s10589-013-9615-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9615-y

Keywords

Navigation