Skip to main content
Log in

A class of distributed optimization methods with event-triggered communication

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present a class of methods for distributed optimization with event-triggered communication. To this end, we extend Nesterov’s first order scheme to use event-triggered communication in a networked environment. We then apply this approach to generalize the proximal center algorithm (PCA) for separable convex programs by Necoara and Suykens. Our method uses dual decomposition and applies the developed event-triggered version of Nesterov’s scheme to update the dual multipliers. The approach is shown to be well suited for solving the active optimal power flow (DC-OPF) problem in parallel with event-triggered and local communication. Numerical results for the IEEE 57 bus and IEEE 118 bus test cases confirm that approximate solutions can be obtained with significantly less communication while satisfying the same accuracy estimates as solutions computed without event-triggered communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakirtzis, A., Biskas, P.: A decentralized solution to the DC-OPF of interconnected power systems. IEEE Trans. Power Syst. 18(3), 1007–1013 (2003)

    Article  Google Scholar 

  2. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical Methods. Prentice Hall, New York (1989)

    MATH  Google Scholar 

  3. Bhattacharya, S., Kumar, V., Likhachev, M.: Distributed optimization with pairwise constraints and its application to multi-robot path planning. In: Proceedings of the Conference on Robotics: Science and Systems (2010)

    Google Scholar 

  4. Jacobo, J., Roure, D.D.: A decentralised DC optimal power flow model. In: Proceedings of the International Conference on Deregulation and Restructuring and Power Technologies (2008)

    Google Scholar 

  5. Kim, B., Baldick, R.: A comparison of distributed optimal power flow algorithms. IEEE Trans. Power Syst. 15(2), 599–604 (2000)

    Article  Google Scholar 

  6. Lemmon, M.: Event-triggered feedback in control, estimation, and optimization. In: Heemels, A.B.M., Johansson, M. (eds.) Networked Control Systems, vol. 406, pp. 293–358. Springer, Berlin (2010)

    Chapter  Google Scholar 

  7. Lin, C., Lin, S.: Distributed optimal power flow with discrete control variables of large distributed power systems. IEEE Trans. Power Syst. 23(3), 1383–1392 (2008)

    Article  Google Scholar 

  8. Necoara, I., Suykens, J.: Application of a smoothing technique to decomposition in convex optimization. IEEE Trans. Autom. Control 53(11), 2674–2679 (2008)

    Article  MathSciNet  Google Scholar 

  9. Nedic, A., Ozdaglar, A.: Cooperative distributed multi-agent optimization. In: Eldar, Y., Palomar, D. (eds.) Convex Optimization in Signal Processing and Communications. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  10. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. University of Washington—Department of Electrical Engineering: Power systems test case archive (1999). http://www.ee.washington.edu/research/pstca/

  12. Palomar, D., Chiang, M.: A tutorial on decomposition methods for network utility maximization. IEEE J. Sel. Areas Commun. 24(8), 1439–1451 (2006)

    Article  Google Scholar 

  13. Palomar, D., Chiang, M.: Alternative distributed algorithms for network utility maximization: framework and applications. IEEE Trans. Autom. Control 52(12), 2254–2269 (2007)

    Article  MathSciNet  Google Scholar 

  14. Parker, L.: Decision making as optimization in multi-robot teams. In: Proceedings of the International Conference on Distributed Computing and Internet Technology (2012)

    Google Scholar 

  15. Purchala, K., Meeus, L., Van Dommelen, D., Belmans, R.: Usefulness of DC power flow for active power flow analysis. In: Proceedings of the IEEE Power Engineering Society General Meeting, vol. 1, pp. 454–459 (2005)

    Google Scholar 

  16. Samar, S., Boyd, S., Gorinevsky, D.: Distributed estimation via dual decomposition. In: Proceedings of the European Control Conference, pp. 1511–1516 (2007)

    Google Scholar 

  17. Speranzon, A., Fischione, C., Johansson, K.: Distributed and collaborative estimation over wireless sensor networks. In: Proceedings of the IEEE Conference on Decision and Control, pp. 1025–1030 (2006)

    Chapter  Google Scholar 

  18. Sun, J., Tesfatsion, L.: Dc optimal power flow formulation and solution using QuadProgJ. In: Economics Department, vol. 6014, pp. 1–36. Iowa State University Press, Ames (2006)

    Google Scholar 

  19. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wan, P., Lemmon, M.: Distributed network utility maximization using event-triggered augmented Lagrangian methods. In: Proceedings of the American Control Conference, vol. 1, pp. 3298–3303 (2009)

    Google Scholar 

  21. Wan, P., Lemmon, M.: Distributed network utility maximization using event-triggered barrier methods. In: Proceedings of the American Control Conference (2009)

    Google Scholar 

  22. Wan, P., Lemmon, M.: Optimal power flow in microgrids using event-triggered optimization. In: American Control Conference, pp. 2521–2526 (2010)

    Google Scholar 

  23. Wei, E., Ozdaglar, A., Jadbabaie, A.: A distributed Newton method for network utility maximization. In: Proceedings of the IEEE Conference on Decision and Control, pp. 1816–1821 (2010)

    Google Scholar 

  24. Yang, B., Johansson, M.: Distributed optimization and games: a tutorial overview. In: Heemels, A.B.M., Johansson, M. (eds.) Networked Control Systems, vol. 406, pp. 109–148. Springer, Berlin (2010)

    Chapter  Google Scholar 

  25. Zhong, M., Cassandras, C.: Asynchronous distributed optimization with event-driven communication. IEEE Trans. Autom. Control 55(12), 2735–2750 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The support of this work by the German Research Foundation (DFG) within the Priority Program SPP 1305 “Control Theory of Digitally Networked Dynamical Systems” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ulbrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meinel, M., Ulbrich, M. & Albrecht, S. A class of distributed optimization methods with event-triggered communication. Comput Optim Appl 57, 517–553 (2014). https://doi.org/10.1007/s10589-013-9609-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9609-9

Keywords

Navigation