Skip to main content
Log in

Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider block-decomposition first-order methods for solving large-scale conic semidefinite programming problems given in standard form. Several ingredients are introduced to speed-up the method in its pure form such as: an aggressive choice of stepsize for performing the extragradient step; use of scaled inner products; dynamic update of the scaled inner product for properly balancing the primal and dual relative residuals; and proper choices of the initial primal and dual iterates, as well as the initial parameter for the scaled inner product. Finally, we present computational results showing that our method outperforms the two most competitive codes for large-scale conic semidefinite programs, namely: the boundary-point method introduced by Povh et al. and the Newton-CG augmented Lagrangian method by Zhao et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

A-BD-HPE Framework 
Algorithm 
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bottcher, A., Grudsky, S.: The norm of the product of a large matrix and a random vector. Electron. J. Probab. 8, 7 (2003), 29 p., electronic only. URL: http://eudml.org/doc/124759

    Article  MathSciNet  Google Scholar 

  2. Burachik, R.S.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Anal. 10, 297–316 (2002). doi:10.1023/A:1020639314056

    Article  MATH  MathSciNet  Google Scholar 

  3. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 5, 159–180 (1997). doi:10.1023/A:1008615624787

    Article  MATH  MathSciNet  Google Scholar 

  4. Burer, S., Monteiro, R.D.C., Zhang, Y.: A computational study of a gradient-based log-barrier algorithm for a class of large-scale SDPs. Math. Program. 95, 359–379 (2003). doi:10.1007/s10107-002-0353-7

    Article  MATH  MathSciNet  Google Scholar 

  5. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011). doi:10.1007/s10851-010-0251-1

    Article  MATH  MathSciNet  Google Scholar 

  6. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles (January 2002). doi:10.1007/s101070100263

  7. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976). doi:10.1016/0898-1221(76)90003-1. URL: http://www.sciencedirect.com/science/article/pii/0898122176900031

    Article  MATH  Google Scholar 

  8. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis et la résolution par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. RAIRO. Anal. Numér. 2, 41–76 (1975)

    MathSciNet  Google Scholar 

  9. Malick, J., Povh, J., Rendl, F., Wiegele, A.: Regularization methods for semidefinite programming. SIAM J. Optim. 20(1), 336–356 (2009). doi:10.1137/070704575

    Article  MATH  MathSciNet  Google Scholar 

  10. Monteiro, R.D.C., Svaiter, B.F.: On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean. SIAM J. Optim. 20(6), 2755–2787 (2010). doi:10.1137/090753127. URL: http://link.aip.org/link/?SJE/20/2755/1

    Article  MATH  MathSciNet  Google Scholar 

  11. Monteiro, R.D.C., Svaiter, B.F.: Complexity of variants of Tseng’s modified F-B splitting and Korpelevich’s methods for hemivariational inequalities with applications to saddle-point and convex optimization problems. SIAM J. Optim. 21(4), 1688–1720 (2011). doi:10.1137/100801652. URL: http://link.aip.org/link/?SJE/21/1688/1

    Article  MATH  MathSciNet  Google Scholar 

  12. Monteiro, R., Svaiter, B.: Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23(1), 475–507 (2013). doi:10.1137/110849468

    Article  MATH  MathSciNet  Google Scholar 

  13. Monteiro, R.D.C., Ortiz, C., Svaiter, B.F.: A first-order block-decomposition method for solving two-easy-block structured semidefinite programs. Optimization-online preprint 3544, pp. 1–33 (2012). URL: http://www.optimization-online.org/DB_HTML/2012/07/3544.html

  14. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discrete Optim. 6(3), 231–241 (2009). doi:10.1016/j.disopt.2009.01.002. URL: http://www.sciencedirect.com/science/article/pii/S1572528609000036

    Article  MATH  MathSciNet  Google Scholar 

  15. Povh, J., Rendl, F., Wiegele, A.: A boundary point method to solve semidefinite programs. Computing 78, 277–286 (2006). doi:10.1007/s00607-006-0182-2

    Article  MATH  MathSciNet  Google Scholar 

  16. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  17. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient—proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4), 323–345 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)

    MATH  MathSciNet  Google Scholar 

  19. Svaiter, B.F.: A family of enlargements of maximal monotone operators. Set-Valued Anal. 8, 311–328 (2000). doi:10.1023/A:1026555124541

    Article  MATH  MathSciNet  Google Scholar 

  20. Toh, K.C., Todd, M.J., Tütüncü, R.H.: Sdpt3—a Matlab software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  21. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput. 2, 203–230 (2010). doi:10.1007/s12532-010-0017-1

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhao, X.-Y., Sun, D., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite programming. SIAM J. Optim. 20(4), 1737–1765 (2010). doi:10.1137/080718206. URL: http://link.aip.org/link/?SJE/20/1737/1

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Ortiz.

Additional information

The work of R.D.C. Monteiro was partially supported by NSF Grants CCF-0808863, CMMI-0900094 and CMMI-1300221, and ONR Grant ONR N00014-11-1-0062.

The work of B.F. Svaiter was partially supported by CNPq grants no. 474944/2010-7, 303583/2008-8 and FAPERJ grant E-26/110.821/2008.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 453 kB)

Appendix: Technical results

Appendix: Technical results

Lemma 5.1

Theorem 2.2 in [1]

Given a self adjoint positive definite linear mapping \(\mathcal{U}:\mathcal {Y}\to \mathcal{Y}\) and a random vector \(y\in\mathcal{Y}\) uniformly distributed on a ball, we have that

$$\mathbb{E} \biggl(\frac{\Vert \mathcal{U}^{1/2}y\Vert ^{2}}{\Vert \mathcal{U}\Vert \Vert y\Vert ^{2}} \biggr )=\frac {1}{\sigma_{m}} \frac{\sum\sigma_{i}}{m}\le1 $$

where σ 1≤⋯≤σ m are the eigenvalues values of \(\mathcal{U}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, R.D.C., Ortiz, C. & Svaiter, B.F. Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems. Comput Optim Appl 57, 45–69 (2014). https://doi.org/10.1007/s10589-013-9590-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9590-3

Keywords

Navigation