Skip to main content
Log in

A globally convergent semi-smooth Newton method for control-state constrained DAE optimal control problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We investigate a semi-smooth Newton method for the numerical solution of optimal control problems subject to differential-algebraic equations (DAEs) and mixed control-state constraints. The necessary conditions are stated in terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum principle is transformed into an equivalent nonlinear and semi-smooth equation in appropriate Banach spaces. This nonlinear and semi-smooth equation is solved by a semi-smooth Newton method. We extend known local and global convergence results for ODE optimal control problems to the DAE optimal control problems under consideration. Special emphasis is laid on the calculation of Newton steps which are given by a linear DAE boundary value problem. Regularity conditions which ensure the existence of solutions are provided. A regularization strategy for inconsistent boundary value problems is suggested. Numerical illustrations for the optimal control of a pendulum and for the optimal control of discretized Navier-Stokes equations conclude the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Backes, A.: Extremalbedingungen für Optimierungs-Probleme mit Algebro-Differentialgleichungen. PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät, Humboldt-Universität Berlin, Berlin, Germany (2006)

  2. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Classics in Applied Mathematics, vol. 14. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  3. Chen, J., Gerdts, M.: Numerical solution of control-state constrained optimal control problems with inexact nonsmooth and smoothing Newton methods (2008, submitted)

  4. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38, 1200–1216 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  6. Fischer, A.: A special Newton-type optimization method. Optimization 24, 269–284 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fischer, A.: Solution of monotone complementarity problems with locally Lipschitzian functions. Math. Program. 76, 513–532 (1997)

    MATH  Google Scholar 

  8. Gear, C.W., Leimkuhler, B., Gupta, G.K.: Automatic integration of Euler-Lagrange equations with constraints. J. Comput. Appl. Math. 12(13), 77–90 (1985)

    Article  MathSciNet  Google Scholar 

  9. Gerdts, M.: Local minimum principle for optimal control problems subject to index-two differential-algebraic equations. J. Optim. Theory Appl. 130, 443–462 (2006)

    Article  Google Scholar 

  10. Gerdts, M.: Representation of the Lagrange multipliers for optimal control problems subject to differential-algebraic equations of index two. J. Optim. Theory Appl. 130, 231–251 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gerdts, M.: Direct shooting method for the numerical solution of higher index DAE optimal control problems. J. Optim. Theory Appl. 117, 267–294 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gerdts, M.: Global convergence of a nonsmooth Newton method for control-state constrained optimal control problems. SIAM J. Optim. 19, 326–350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gritsis, D.M., Pantelides, C.C., Sargent, R.W.H.: Optimal control of systems described by index two differential-algebraic equations. SIAM J. Sci. Comput. 16, 1349–1366 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1996)

    MATH  Google Scholar 

  15. Hermes, H., Lasalle, J.P.: Functional Analysis and Time Optimal Control. Mathematics in Science and Engineering, vol. 56. Academic Press, New York (1969)

    Book  MATH  Google Scholar 

  16. Jiang, H.: Global convergence analysis of the generalized Newton and Gauss-Newton methods of the Fischer-Burmeister equation for the complementarity problem. Math. Oper. Res. 24, 529–543 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kummer, B.: Newton’s method for non-differentiable functions. In: Guddat, J., et al. (eds.) Advances in Mathematical Optimization, pp. 171–194. Akademie-Verlag, Berlin (1988)

    Google Scholar 

  18. Kummer, B.: Newton’s method based on generalized derivatives for nonsmooth functions: convergence analysis. In: Oettli, W., Pallaschke, D. (eds.) Advances in Optimization, pp. 171–194. Springer, Berlin (1991)

    Google Scholar 

  19. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. European Mathematical Society Publishing House, Zurich (2006)

    Book  MATH  Google Scholar 

  20. Kunkel, P., Stöver, R.: Symmetric collocation methods for linear differential-algebraic boundary value problems. Numer. Math. 91, 475–501 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pantelides, C.C., Sargent, R.W.H., Vassiliadis, V.S.: Optimal control of multistage systems described by high-index differential-algebraic equations. In: Bulirsch, R. (ed.) Computational Optimal Control. International Series of Numerical Mathematics, vol. 115, pp. 177–191. Birkhäuser, Basel (1994)

    Google Scholar 

  22. Petzold, L.R.: Differential/algebraic equations are not ODE’s. SIAM J. Sci. Stat. Comput. 3, 367–384 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  23. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Roubicek, T., Valásek, M.: Optimal control of causal differential-algebraic systems. J. Math. Anal. Appl. 269, 616–641 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. J. Future Gener. Comput. Syst. 20, 475–487 (2002)

    Google Scholar 

  27. Schenk, O., Gärtner, K.: On fast factorization pivoting methods for sparse symmetric indefinite systems. ETNA Electron. Trans. Numer. Anal. 23, 158–179 (2006)

    MATH  Google Scholar 

  28. Schulz, V.H., Bock, H.G., Steinbach, M.C.: Exploiting invariants in the numerical solution of multipoint boundary value problems for DAE. SIAM J. Sci. Comput. 19, 440–467 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ulbrich, M.: Nonsmooth Newton-like methods for variational inequalities and constrained optimization problems in function spaces. Habilitation, Technical University of Munich, Munich (2002)

  30. Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13, 805–841 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Gerdts.

Additional information

M. Gerdts is supported by DFG grant GE 1163/5-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerdts, M., Kunkel, M. A globally convergent semi-smooth Newton method for control-state constrained DAE optimal control problems. Comput Optim Appl 48, 601–633 (2011). https://doi.org/10.1007/s10589-009-9275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9275-0

Keywords

Navigation