Skip to main content
Log in

Primal-dual interior-point method for thermodynamic gas-particle partitioning

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A mathematical model for the computation of the phase equilibrium and gas-particle partitioning in atmospheric organic aerosols is presented. The thermodynamic equilibrium is determined by the global minimum of the Gibbs free energy under equality and inequality constraints for a system that involves one gas phase and many liquid phases. A primal-dual interior-point algorithm is presented for the efficient solution of the phase equilibrium problem and the determination of the active constraints. The first order optimality conditions are solved with a Newton iteration. Sequential quadratic programming techniques are incorporated to decouple the different scales of the problem. Decomposition methods that control the inertia of the matrices arising in the resolution of the Newton system are proposed. A least-squares initialization of the algorithm is proposed to favor the convergence to a global minimum of the Gibbs free energy. Numerical results show the efficiency of the approach for the prediction of gas-liquid-liquid equilibrium for atmospheric organic aerosol particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amundson, N., Caboussat, A., He, J.W., Seinfeld, J.H.: An optimization problem related to the modeling of atmospheric organic aerosols. C. R. Acad. Sci. Paris, Sér. I 340(10), 765–768 (2005)

    MATH  MathSciNet  Google Scholar 

  2. Amundson, N.R., Caboussat, A., He, J.W., Seinfeld, J.H.: Primal-dual interior-point algorithm for chemical equilibrium problems related to modeling of atmospheric organic aerosols. J. Optim. Theory Appl. 130(3), 375–407 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amundson, N.R., Caboussat, A., He, J.W., Seinfeld, J.H., Yoo, K.Y.: A primal-dual active-set algorithm for chemical equilibrium problems related to modeling of atmospheric inorganic aerosols. J. Optim. Theory Appl. 128(3), 469–498 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Amundson, N.R., Caboussat, A., Landry, C., He, J.W., Seinfeld, J.H.: A dynamic optimization problem related to organic aerosols. C. R. Acad. Sci. Paris Sér. I 344(8), 519–522 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Benoist, J., Hiriart-Urruty, J.-B.: What is the subdifferential of the closed convex hull of a function? SIAM J. Numer. Anal. 27(6), 1661–1679 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Benson, H.Y., Shanno, D.F.: Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts. Comput. Optim. Appl. 40(2), 143–189 (2007)

    Article  MathSciNet  Google Scholar 

  7. Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: jamming and numerical testing. Math. Program. 99(1), 35–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Benson, H.Y., Sen, A., Shanno, D.F., Vanderbei, R.J.: Interior-point algorithms, penalty methods and equilibrium problems. Comput. Optim. Appl. 34(3), 155–182 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Byrd, R., Gilbert, J.Ch., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89, 149–185 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Byrd, R., Hribar, M.E., Nocedal, J.: An interior point method for large scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Byrd, R.H., Nocedal, J., Waltz, R.A.: KNITRO: an integrated package for nonlinear optimization. In: di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp. 35–59. Springer, Berlin (2006)

    Chapter  Google Scholar 

  12. Cohen, N., Dancis, J.: Inertias of block band matrix completions. SIAM J. Matrix Anal. Appl. 19(3), 583–612 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Denbigh, K.: The Principles of Chemical Equilibrium, 3rd edn. Cambridge University Press, Cambridge (1971)

    Google Scholar 

  14. El-Bakry, A., Tapia, R., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl. 89(3), 507–541 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Facchinei, F., Fischer, A., Kanzow, C.: On the accurate identification of active constraints. SIAM J. Optim. 9(1), 14–32 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York (1968)

    MATH  Google Scholar 

  17. Forsgren, A., Gill, P.E.: Primal-dual interior methods for nonconvex nonlinear programming. SIAM J. Optim. 8, 1132–1152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fredenslund, A., Gmehling, J., Rasmussen, P.: Vapor-Liquid Equilibrium Using UNIFAC. Elsevier, Amsterdam (1977)

    Google Scholar 

  20. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Inertia-controlling methods for general quadratic programming. SIAM Rev. 33(1), 1–36 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gondzio, J., Grothey, A.: Direct solution of linear systems of size 109 arising in optimization with interior point methods. In: Lecture Notes in Computer Science, pp. 513–525. Springer, Berlin (2006)

    Google Scholar 

  22. Jiang, Y., Chapman, G.R., Smith, W.R.: On the geometry of chemical reaction and phase equilibria. Fluid Phase Equilib. 118(1), 77–102 (1996)

    Article  Google Scholar 

  23. Kim, Y.P., Seinfeld, J.H.: Atmospheric gas-aerosol equilibrium III: thermodynamics of crustal elements Ca2+, K+, and Mg2+. Aerosol Sci. Technol. 22, 93–110 (1995)

    Article  Google Scholar 

  24. Kulik, D.A.: A Gibbs energy minimization approach to model sorption equilibria at the mineral-water interface: thermodynamic relations for multi-site-surface complexation. Am. J. Sci. 302, 227–279 (2002)

    Article  Google Scholar 

  25. Lucia, A., Padmanabhan, L., Venkataraman, S.: Multiphase equilibrium flash calculations. Comput. Chem. Eng. 24(12), 2557–2569 (2000)

    Article  Google Scholar 

  26. McDonald, C.M., Floudas, C.A.: Global optimization and analysis for the Gibbs free energy function for the UNIFAC, Wilson, and ASOG equations. Ind. Eng. Chem. Res. 34, 1674–1687 (1995)

    Article  Google Scholar 

  27. McDonald, C.M., Floudas, C.A.: GLOPEQ: a new computational tool for the phase and chemical equilibrium problem. Comput. Chem. Eng. 21(1), 1–23 (1996)

    Article  Google Scholar 

  28. McKinnon, K., Mongeau, M.: A generic global optimization algorithm for the chemical and phase equilibrium problem. J. Glob. Optim. 12(4), 325–351 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. McKinnon, K., Millar, C., Mongeau, M.: Global optimization for the chemical and phase equilibrium problem using interval analysis. In: State of the Art in Global Optimization, pp. 365–381. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  30. Michelsen, M.L.: The isothermal flash problem. Part I: stability. Fluid Phase Equilib. 9(1), 1–19 (1982)

    Article  Google Scholar 

  31. Nenes, A., Pandis, S.N., Pilinis, C.: ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 4, 123–152 (1998)

    Article  Google Scholar 

  32. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  33. Pankow, J.F.: An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 28(2), 185–188 (1994)

    Article  Google Scholar 

  34. Pankow, J.F.: An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos. Environ. 28(2), 189–193 (1994)

    Article  Google Scholar 

  35. Poling, B.E., Prausnitz, J.M., Connell, J.P.: Properties of Gases and Liquids. McGraw-Hill, New York (2001)

    Google Scholar 

  36. Rabier, P.J., Griewank, A.: Generic aspects of convexification with applications to thermodynamic equilibrium. Arch. Ration. Mech. Anal. 118(4), 349–397 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rockafellar, R.T.: Convex Analysis, Reprint edn. Princeton University Press, Princeton (1996)

    Google Scholar 

  38. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York (1998)

    Google Scholar 

  39. Smith, J.V., Missen, R.W., Smith, W.R.: General optimality criteria for multiphase multireaction chemical equilibrium. AIChE J. 39(4), 707–710 (1993)

    Article  Google Scholar 

  40. Teh, Y.S., Rangaiah, G.P.: Tabu search for global optimization of continuous functions with application to phase equilibrium calculations. Comput. Chem. Eng. 27(11), 1665–1679 (2003)

    Article  Google Scholar 

  41. Tits, A.L., Wachter, A., Bakhtiari, S., Urban, T.J., Lawrence, C.T.: A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties. SIAM J. Optim. 14(1), 173–199 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Vanderbei, R.J.: LOQO: an interior point code for quadratic programming. Optim. Methods Softw. 11(1–4), 451–484 (1999)

    Article  MathSciNet  Google Scholar 

  43. Wächter, A.: An interior point algorithm for large-scale nonlinear optimization with applications in process engineering. Ph.D. thesis, Carnegie Mellon University (2002)

  44. Wächter, A., Biegler, L.T.: Failure of global convergence for a class of interior point methods for nonlinear programming. Math. Program. 88(3), 565–574 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: local convergence. SIAM J. Optim. 16(1), 32–48 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16(1), 1–31 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  48. Wasylkiewicz, S.K., Sridhar, L.N., Doherty, M.F., Malone, M.F.: Global stability analysis and calculation of liquid-liquid equilibrium in multicomponent mixtures. Ind. Eng. Chem. Res. 35, 1395–1408 (1996)

    Article  Google Scholar 

  49. Yamashita, H., Yabe, H., Tanabe, T.: A globally and superlinearly convergent primal-dual interior point trust region method for large scale constrained optimization. Math. Program. Ser. A 102, 111–151 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Caboussat.

Additional information

Partially supported by University of Houston New Faculty Grant I094138 and US Environmental Protection Agency Grant X-83234201.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caboussat, A. Primal-dual interior-point method for thermodynamic gas-particle partitioning. Comput Optim Appl 48, 717–745 (2011). https://doi.org/10.1007/s10589-009-9262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9262-5

Keywords

Navigation