Skip to main content
Log in

Shells of monotone curves

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We determine in ℝn the form of curves C corresponding to strictly monotone functions as well as the components of affine connections ▿ for which any image of C under a compact-free group Ω of affinities containing the translation group is a geodesic with respect to ▿. Special attention is paid to the case that Ω contains many dilatations or that C is a curve in ℝ3. If C is a curve in ℝ3 and Ω is the translation group then we calculate not only the components of the curvature and the Weyl tensor but we also decide when ▿ yields a flat or metrizable space and compute the corresponding metric tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Betten: Topological shift spaces. Adv. Geom. 5 (2005), 107–118.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Betten: Some classes of topological 3-spaces. Result. Math. 12 (1987), 37–61. (In German.)

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Cartan: Les espaces riemanniens symetriques. Verh. Internat. Math.-Kongr. 1 (1932), 152–161. (In French.)

    MathSciNet  Google Scholar 

  4. L. P. Eisenhart: Non-Riemannian geometry. American Mathematical Society Colloquium Publications 8. American Mathematical Society, Providence, 1990.

    Google Scholar 

  5. G. Gerlich: Topological affine planes with affine connections. Adv. Geom. 5 (2005), 265–278.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Gerlich: Stable projective planes with Riemannian metrics. Arch. Math. 79 (2002), 317–320.

    Article  MATH  MathSciNet  Google Scholar 

  7. I. Hinterleitner, J. Mikeš: Geodesic mappings onto Weyl spaces. Proc. 8th Int. Conf. on Appl. Math. (APLIMAT 2009), Bratislava, pp. 423–430.

  8. R. S. Irving: Integers, Polynomials, and Rings. A Course in Algebra. Undergraduate Texts in Mathematics, Springer, New York, 2004.

    Google Scholar 

  9. V. F. Kagan: Subprojective Spaces. Bibliothek der Russischen Wissenschaften Mathematik, Mechanik, Physik, Astronomie, Staatsverlag fur Physikalisch-Mathematische Literatur, Moskva, 1961. (In Russian.)

    Google Scholar 

  10. E. Kamke: Differentialgleichungen. Lösungsmethoden und Lösungen. 1. Gewöhnliche Differentialgleichungen. Akademische Verlagsgesellschaft, Leipzig, 1942. (In German.)

    MATH  Google Scholar 

  11. E. Kamke: Differentialgleichungen Reeller Funktionen. Akademische Verlagsgesellschaft, Leipzig, 1930. (In German.)

    MATH  Google Scholar 

  12. J. Mikeš: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78 (1996), 311–333.

    Article  MATH  Google Scholar 

  13. J. Mikeš, K. Strambach: Grünwald shift spaces. Publ. Math. 83 (2013), 85–96.

    MATH  Google Scholar 

  14. J. Mikeš, K. Strambach: Differentiable structures on elementary geometries. Result. Math. 53 (2009), 153–172.

    Article  MATH  Google Scholar 

  15. J. Mikeš, A. VanŽurová, I. Hinterleitner: Geodesic Mappings and Some Generalizations. Palacký University, Faculty of Science, Olomouc, 2009.

    MATH  Google Scholar 

  16. A. P. Norden: Spaces with Affine Connection. Nauka, Moskva, 1976. (In Russian.)

    MATH  Google Scholar 

  17. A. Z. Petrov: New Methods in the General Theory of Relativity. Hauptredaktion für Physikalisch-Mathematische Literatur, Nauka, Moskva, 1966. (In Russian.)

    Google Scholar 

  18. H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, M. Stroppel: Compact Projective Planes. With an Introduction to Octonion Geometry. De Gruyter Expositions in Mathematics 21, De Gruyter, Berlin, 1995.

    Book  Google Scholar 

  19. N. S. Sinyukov: Geodesic Mappings of Riemannian Spaces. Nauka, Moskva, 1979. (In Russian.)

    MATH  Google Scholar 

  20. K. Yano, S. Bochner: Curvature and Betti Numbers. Annals of Mathematics Studies 32, Princeton University Press 9, Princeton, 1953.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Mikeš.

Additional information

The authors are supported by the grant from Grant Agency of Czech Republic GA ČR P201/11/0356, and by the Department Mathematik der Universität Erlangen-Nürnberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikeš, J., Strambach, K. Shells of monotone curves. Czech Math J 65, 677–699 (2015). https://doi.org/10.1007/s10587-015-0202-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-015-0202-5

Keywords

MSC 2010

Navigation