Skip to main content

Advertisement

Log in

CAC-WOA: context aware clustering with whale optimization algorithm for knowledge discovery from multidimensional space in electricity application

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Energy consumption forecasting is a hot field of research; despite the number of developed models, projecting electric consumption in residential buildings remains problematic owing to the significant unpredictability of occupant energy use behavior. Discovering the electricity consumption knowledge from the multi-dimensional data streams (MDDS) of electricity logs is a challenging research problem. We propose a novel electricity knowledge discovery model proposed from the MDDS using clustering and machine learning. Context-aware clustering with whale optimization algorithm (CAC-WOA) is proposed to discover the predictive features from the electricity MDDS and perform the predictions using WOA. The CAC-WOA consists of two phases context-aware group formation and a WOA-based machine learning predictive model. In the CAC algorithm, group formation using electricity contextual information to estimate the robust predictive features are proposed. Using such predictive features, the predictive model using the WOA-based artificial neural network (ANN) is built. The modified ANN technique using the WOA algorithm is used to reduce the error rates and improve the prediction accuracy. The experimental outcomes using publicly available electricity consumption datasets prove the efficiency of the CAC-WOA model. Overall prediction accuracy is improved by 3.27% and prediction time is reduced by 11.31% using CAC-WOA compared state-of-the-art solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are publicly available.

References

  1. Khan, L., Fan, W.: Tutorial: data stream mining and its applications. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.S., Unland, R., Yoo, J. (eds.) Database Systems for Advanced Applications. DASFAA 2012. Lecture Notes in Computer Science, vol. 7239. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  2. Mohamed, H.: Data stream mining. In Proc. of the 1st International Conference on Machine and Web Intelligence (ICMWI’2010), Algiers, Algeria (2010)

  3. Pramod, S., Vyas, O.: Data stream mining: a review. https://doi.org/10.1007/978-1-4614-3363-7_75 (2013)

  4. Alothali, E., Alashwal, H., Harous, S.: Data stream mining techniques: a review. TELKOMNIKA 17, (2019)

  5. Agrawal, L.: Survey and research issues in data stream mining. Biosci. Biotechnol. Res. Commun. 13, 146–149 (2020)

    Article  Google Scholar 

  6. Padma, R.: Review in data stream mining in big data. Int. J. Res. Appl. Sci. Eng. Technol. 8, 405–408 (2020)

    Article  Google Scholar 

  7. Rutkowski, L. Jaworski, M., Duda, P.: Decision trees in data stream mining. https://doi.org/10.1007/978-3-030-13962-9_3 (2020)

  8. Rutkowski, L., Jaworski, M., Duda, P. Basic concepts of data stream mining. https://doi.org/10.1007/978-3-030-13962-9_2 (2020)

  9. Mahdi, O.A., Pardede, E., Ali, N.: KAPPA as drift detector in data stream mining. Procedia Comput. Sci. 184, 314–321 (2021)

    Article  Google Scholar 

  10. Bot, K., Ruano, A., da GraçaRuano, M.: Forecasting electricity consumption in residential buildings for home energy management systems. In: Lesot, M.J., et al. (eds.) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2020. Communications in Computer and Information Science, vol. 1237. Springer, Cham (2020)

    Google Scholar 

  11. Nti, I.K., Teimeh, M., Nyarko-Boateng, O., et al.: Electricity load forecasting: a systematic review. J. Electr. Syst. Inf. Technol. 7, 13 (2020)

    Article  Google Scholar 

  12. Gonzalez-Briones, A., Hernandez, G., Corchado, J.M., Omatu, S., Mohamad, M. S.: Machine learning models for electricity consumption forecasting: a review. 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS) (2019)

  13. Ferlito, S., Atrigna, M., Graditi, G., De Vito, S., Salvato, M., Buonanno, A., Di Francia, G.: Predictive models for building’s energy consumption: an artificial neural network (ANN) approach. 2015 XVIII AISEM Annual Conference (2015)

  14. Bahij, M., Labbadi, M., Cherkaoui, M., Chatri, C., Elkhatiri, A., Elouerghi, A.: A review on the prediction of energy consumption in the industry sector based on machine learning approaches. 01–05 (2021)

  15. Arumugam, P., Jose, P.: Revealing household electricity power consumption using data mining algorithms. Int. J. Stat. Reliab. Eng. 7(3), 350–354 (2021)

    Google Scholar 

  16. González Briones, A., Hernández, G., Pinto, T., Vale, Z., Corchado Rodríguez, J.: A review of the main machine learning methods for predicting residential energy consumption, 1–6 (2019)

  17. Xiangyu, Z., Qingqing, M., Tao, L., Lei, Z., Jianquan, Z.: Linear Regression electricity prediction method based on clustering of electric characteristics. In: Proceedings of the 2nd International Conference on Big Data Technologies (ICBDT2019), pp. 171–176. Association for Computing Machinery, New York (2019)

    Chapter  Google Scholar 

  18. Shchetinin, E.: Cluster-based energy consumption forecasting in smart grids. J. Phys.: Conf. Ser. (2019)

  19. Qiao, Q., Yunusa-Kaltungo, A., Edwards, R.: Hybrid method for building energy consumption prediction based on limited data (2020)

  20. Bian, H., Zhong, Y., Sun, J., Shi, F.: Study on power consumption load forecast based on K-means clustering and FCM–BP model. Energy Rep. 6(Supplement 9), 693–700 (2020)

    Article  Google Scholar 

  21. Buddhahai, B., Wongseree, W., Rakkwamsuk, P.: An energy prediction approach for a nonintrusive load monitoring in home appliances. IEEE Trans. Consum. Electron. 66, 1 (2019)

    Google Scholar 

  22. Bourhnane, S., Abid, M.R., Lghoul, R., et al.: Machine learning for energy consumption prediction and scheduling in smart buildings. SN Appl. Sci. 2, 297 (2020)

    Article  Google Scholar 

  23. Li, T., Fong, S., Li, X., Lu, Z., Gandomi, A.H.: Swarm decision table and ensemble search methods in fog computing environment: case of day-ahead prediction of building energy demands using IoT sensors. IEEE Internet Things J. 7(3), 2321–2342 (2020)

    Article  Google Scholar 

  24. Khan, A.-N., Iqbal, N., Rizwan, A., Ahmad, R., Kim, D.-H.: An ensemble energy consumption forecasting model based on spatial-temporal clustering analysis in residential buildings. Energies 14, 3020 (2021)

    Article  Google Scholar 

  25. Shapi, M.K., Ramli, N.A., Awalin, L.J.: Energy consumption prediction by using machine learning for smart building: case study in Malaysia. Dev. Built Environ. 5, 100037 (2021)

    Article  Google Scholar 

  26. Amasyali, K., El-Gohary, N.: Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings. Renew. Sustain. Energy Rev. 142, 110714 (2021)

    Article  Google Scholar 

  27. Banik, R., Das, P., Ray, S., et al.: Prediction of electrical energy consumption based on machine learning technique. Electr. Eng. 103, 909–920 (2021)

    Article  Google Scholar 

  28. Haq, E.U., Lyu, X., Jia, Y., Hua, M., Ahmad, F.: Forecasting household electric appliances consumption and peak demand based on hybrid machine learning approach. Energy Rep. 6(Supplement 9), 1099–1105 (2020)

    Article  Google Scholar 

  29. Ma, H.: The role of clustering algorithm-based big data processing in information economy development. PLoS ONE 16, e0246718 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hussain, I., Ullah, M., Ullah, I., Bibi, A., Naeem, M., Singh, M., Singh, D.: Optimizing energy consumption in the home energy management system via a bio-inspired dragonfly algorithm and the genetic algorithm. Electronics 9(3), 406 (2020)

    Article  Google Scholar 

  31. Ghosh, S., Chatterjee, D.: Artificial bee colony optimization based non-intrusive appliances load monitoring technique in a smart home. IEEE Trans. Consum. Electron. 67(1), 77–86 (2021)

    Article  Google Scholar 

  32. Bot, K., Santos, S., Laouali, I., Ruano, A., Ruano, M.D.: Design of ensemble forecasting models for home energy management systems. Energies 14(22), 7664 (2021)

    Article  Google Scholar 

  33. Pang, X., Luan, C., Liu, L., et al.: Data-driven random forest forecasting method of monthly electricity consumption. Electr. Eng. 104, 2045–2059 (2022)

    Article  Google Scholar 

  34. Zhang, J., Zhang, H., Ding, S., Zhang, X.: Power consumption predicting and anomaly detection based on transformer and K-means. Front. Energy Res. (2021). https://doi.org/10.3389/fenrg.2021.779587

    Article  Google Scholar 

  35. Agrawal, P., Ganesh, T., Oliva, D., et al.: S-shaped and V-shaped gaining-sharing knowledge-based algorithm for feature selection. Appl. Intell. 52, 81–112 (2022). https://doi.org/10.1007/s10489-021-02233-5

    Article  Google Scholar 

  36. Xiong, G., Yuan, X., Wagdy, A., Chen, J., Zhang, J.: Improved binary gaining–sharing knowledge-based algorithm with mutation for fault section location in distribution networks. J. Comput. Des. Eng. 9, 393–405 (2022). https://doi.org/10.1093/jcde/qwac007

    Article  Google Scholar 

  37. Agrawal, P., Ganesh, T., Mohamed, A.W.: Solving knapsack problems using a binary gaining sharing knowledge-based optimization algorithm. Complex Intell. Syst. 8, 43–63 (2022). https://doi.org/10.1007/s40747-021-00351-8

    Article  Google Scholar 

  38. Agrawal, P., Ganesh, T., Mohamed, A.W.: Chaotic gaining sharing knowledge-based optimization algorithm: an improved metaheuristic algorithm for feature selection. Soft Comput 25, 9505–9528 (2021). https://doi.org/10.1007/s00500-021-05874-3

    Article  Google Scholar 

  39. Agrawal, P., Abutarboush, H.F., Ganesh, T., Mohamed, A.W.: Metaheuristic algorithms on feature selection: a survey of one decade of research (2009–2019). IEEE Access 9, 26766–26791 (2021). https://doi.org/10.1109/access.2021.3056407

    Article  Google Scholar 

  40. Ahmadi, M., Soofiabadi, M., Nikpour, M., Naderi, H., Abdullah, L., Arandian, B.: Developing a deep neural network with fuzzy wavelets and integrating an inline PSO to predict energy consumption patterns in urban buildings. Mathematics 10(8), 1270 (2022). https://doi.org/10.3390/math10081270

    Article  Google Scholar 

  41. Nawara, D., Kashef, R.: Context-aware recommendation systems using consensus-clustering, pp. 1–8. https://doi.org/10.1109/SysCon53536.2022.9773925 (2022)

  42. Yang, S., Huang, G., Ofoghi, B., Yearwood, J.: Short text similarity measurement using context-aware weighted biterms. Concurr. Comput.: Pract. Exp. 34, e5765 (2020). https://doi.org/10.1002/cpe.5765

    Article  Google Scholar 

  43. Aljarah, I., Faris, H., Mirjalili, S.: Optimizing connection weights in neural networks using the whale optimization algorithm. Soft. Comput. 22(1), 1–15 (2016)

    Article  Google Scholar 

  44. http://seil.cse.iitb.ac.in/residential-dataset/

  45. Cai, M., Zhang, X., Tian, G., Liu, J.: Particle swarm optimization system algorithm. In: Huang, D.S., Heutte, L., Loog, M. (eds.) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2007. Communications in Computer and Information Science, vol. 2. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  46. Iwan, M., Akmeliawati, R., Faisal, T., Al-Assadi, H.M.A.A.: Performance comparison of differential evolution and particle swarm optimization in constrained optimization. Procedia Eng. 41, 1323–1328 (2012). https://doi.org/10.1016/j.proeng.2012.07.317

    Article  Google Scholar 

  47. Hashemi, M., Javaheri, D., Sabbagh, P., Arandian, B., Abnoosian, K.: A multi-objective method for virtual machines allocation in cloud data centres using an improved grey wolf optimization algorithm. IET Commun. (2021). https://doi.org/10.1049/cmu2.12274

    Article  Google Scholar 

  48. Moghadam, A., Aghahadi, M., Eslami, M., Rashidi, S., Arandian, B., Nikolovski, S.: Adaptive rat swarm optimization for optimum tuning of SVC and PSS in a power system. Int. Trans. Electr. Energy Syst. (2022). https://doi.org/10.1155/2022/4798029

    Article  Google Scholar 

  49. Mahajan, H.B., Badarla, A., Junnarkar, A.A.: CL-IoT: cross-layer Internet of Things protocol for intelligent manufacturing of smart farming. J. Ambient Intell. Hum. Comput. 12, 7777–7791 (2021). https://doi.org/10.1007/s12652-020-02502-0

    Article  Google Scholar 

  50. Mahajan, H.B., Badarla, A.: Application of internet of things for smart precision farming: solutions and challenges. Int. J. Adv. Sci. Technol., pp. 37–45 (2018)

  51. Alhayani, B., Abbas, S.T., Mohammed, H.J., Mahajan, H.B.: Intelligent secured two-way image transmission using corvus corone module over WSN. Wirel. Pers. Commun. (2021). https://doi.org/10.1007/s11277-021-08484-2

    Article  Google Scholar 

  52. Mahajan, H.B., Badarla, A.: Cross-layer protocol for WSN-assisted IoT smart farming applications using nature inspired algorithm. Wirel. Pers. Commun. 121, 3125–3149 (2021). https://doi.org/10.1007/s11277-021-08866-6

    Article  Google Scholar 

  53. Uke, N., Pise, P., Mahajan, H.B., et al.: Healthcare 4.0 enabled lightweight security provisions for medical data processing. Turkish J. Comput. Math. (2021). https://doi.org/10.17762/turcomat.v12i11.5858

    Article  Google Scholar 

  54. Alhayani, B., Kwekha-Rashid, A.S., Mahajan, H.B., et al.: 5G standards for the industry 4.0 enabled communication systems using artificial intelligence: perspective of smart healthcare system. Appl. Nanosci. (2022). https://doi.org/10.1007/s13204-021-02152-4

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mahajan, H.B., Rashid, A.S., Junnarkar, A.A., et al.: Integration of healthcare 4.0 and blockchain into secure cloud-based electronic health records systems. Appl. Nanosci. (2022). https://doi.org/10.1007/s13204-021-02164-0

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mahajan, H.B., Junnarkar, A.A., Tiwari, M., Tiwari, T., Upadhyaya, M.: LCIPA: lightweight clustering protocol for industry 4.0 enabled precision agriculture. Microprocess. Microsyst. (2022). https://doi.org/10.1016/j.micpro.2022.104633

    Article  Google Scholar 

  57. Mahajan, H.B.: Emergence of healthcare 4.0 and blockchain into secure cloud-based electronic health records systems: solutions, challenges, and future roadmap. Wirel. Pers. Commun. 126, 2425–2446 (2022). https://doi.org/10.1007/s11277-022-09535-y

    Article  Google Scholar 

Download references

Funding

Authors are responsible for funding.

Author information

Authors and Affiliations

Authors

Contributions

PGA wrote the main manuscript under the guidance of PDPD. And both authors reviewed the manuscript.

Corresponding author

Correspondence to Prashant G. Ahire.

Ethics declarations

Conflict of interest

There is no conflict of Interest in the presented research work.

Informed consent

Author and co-author are well aware about publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahire, P.G., Patil, P.D. CAC-WOA: context aware clustering with whale optimization algorithm for knowledge discovery from multidimensional space in electricity application. Cluster Comput 27, 499–513 (2024). https://doi.org/10.1007/s10586-023-03965-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-03965-4

Keywords

Navigation