Skip to main content

Advertisement

Log in

Computational markers for personalized prediction of outcomes in non-small cell lung cancer patients with brain metastases

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Intracranial progression after curative treatment of early-stage non-small cell lung cancer (NSCLC) occurs from 10 to 50% and is difficult to manage, given the heterogeneity of clinical presentations and the variability of treatments available. The objective of this study was to develop a mechanistic model of intracranial progression to predict survival following a first brain metastasis (BM) event occurring at a time \({T}_{BM}\). Data included early-stage NSCLC patients treated with a curative intent who had a BM as the first and single relapse site (N = 31). We propose a mechanistic mathematical model able to derive computational markers from primary tumor and BM data at \({T}_{BM}\) and estimate the amount and sizes of (visible and invisible) BMs, as well as their future behavior. These two key computational markers are \(\alpha \), the proliferation rate of a single tumor cell; and \(\mu \), the per day, per cell, probability to metastasize. The predictive value of these individual computational biomarkers was evaluated. The model was able to correctly describe the number and size of metastases at \({T}_{BM}\) for 20 patients. Parameters \(\alpha \) and \(\mu \) were significantly associated with overall survival (OS) (HR 1.65 (1.07–2.53) p = 0.0029 and HR 1.95 (1.31–2.91) p = 0.0109, respectively). Adding the computational markers to the clinical ones significantly improved the predictive value of OS (c-index increased from 0.585 (95% CI 0.569–0.602) to 0.713 (95% CI 0.700–0.726), p < 0.0001). We demonstrated that our model was applicable to brain oligoprogressive patients in NSCLC and that the resulting computational markers had predictive potential. This may help lung cancer physicians to guide and personalize the management of NSCLC patients with intracranial oligoprogression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  2. Cancer of the Lung and Bronchus-Cancer Stat Facts. SEER.

  3. Chargari C, Dhermain F (2013) Métastases cérébrales d’un cancer bronchique non à petites cellules : du traitement standardisé au traitement personnalisé. Rev Mal Respir Actual 5:547–556

    Google Scholar 

  4. Tabouret E et al (2012) Recent trends in epidemiology of brain metastases: an overview. Anticancer Res 32:4655–4662

    PubMed  Google Scholar 

  5. Hall W, Djalilian H, Nussbaum E, Cho K (2000) Long-term survival with metastatic cancer to the brain. Med Oncol 17:279–286

    Article  CAS  PubMed  Google Scholar 

  6. Gauger J, Patz EF, Coleman RE, Herndon JE (2007) Clinical stage I non-small cell lung cancer including FDG-PET Imaging: sites and time to recurrence. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 2:499–505

    Google Scholar 

  7. Yano T et al (1994) The first site of recurrence after complete resection in non-small-cell carcinoma of the lung. J Thorac Cardiovasc Surg 108:680–683

    Article  CAS  PubMed  Google Scholar 

  8. Sadoyama S et al (2018) Isolated brain metastases as the first relapse after the curative surgical resection in non–small-cell lung cancer patients with an EGFR mutation. Clin Lung Cancer 19:e29–e36

    Article  CAS  PubMed  Google Scholar 

  9. Figlin RA, Piantadosi S, Feld R, The Lung Cancer Study Group (1988) Intracranial recurrence of carcinoma after complete surgical resection of stage I, II, and III non-small-cell lung cancer. N Engl J Med 318:1300–1305

    Article  CAS  PubMed  Google Scholar 

  10. Novello S, Barlesi F, Califano R, Cufer T, Ekman S, Levra MG, Kerr K, Popat S, Reck M, Senan S, Simo GV (2016) Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 27:v1-27

    Article  CAS  PubMed  Google Scholar 

  11. Hellman S, Weichselbaum RR (1995) Stereotactic body radiotherapy for multisite extracranial oligometastases: final report of a dose escalation trial in patients with 1 to 5 sites of metastatic disease. J Clin Oncol Off J Am Soc Clin Oncol 13:8–10

    Article  CAS  Google Scholar 

  12. Laurie SA et al (2019) Canadian consensus: oligoprogressive, pseudoprogressive, and oligometastatic non-small-cell lung cancer. Curr Oncol Tor Ont 26:e81–e93

    Article  CAS  Google Scholar 

  13. Schoenmaekers JJAO, Paats MS, Dingemans A-MC, Hendriks LEL (2020) Central nervous system metastases and oligoprogression during treatment with tyrosine kinase inhibitors in oncogene-addicted non-small cell lung cancer: how to treat and when? Transl Lung Cancer Res 9:2599–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ceresoli GL et al (2002) Brain metastases in locally advanced nonsmall cell lung carcinoma after multimodality treatment: Risk factors analysis. Cancer 95:605–612

    Article  PubMed  Google Scholar 

  15. Zimm S, Wampler GL, Stablein D, Hazra T, Young HF (1981) Intracerebral metastases in solid-tumor patients: natural history and results of treatment. Cancer 48:384–394

    Article  CAS  PubMed  Google Scholar 

  16. Yamamoto M et al (2014) Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol 15:387–395

    Article  PubMed  Google Scholar 

  17. Zindler JD et al (2017) Whole brain radiotherapy versus stereotactic radiosurgery for 4–10 brain metastases: a phase III randomised multicentre trial. BMC Cancer 17:500

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gerosa M, Nicolato A, Foroni R, Tomazzoli L, Bricolo A (2005) Analysis of long-term outcomes and prognostic factors in patients with non-small cell lung cancer brain metastases treated by gamma knife radiosurgery. J Neurosurg 102:75–80

    Article  PubMed  Google Scholar 

  19. Motta M et al (2011) Gamma knife radiosurgery for treatment of cerebral metastases from non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 81:e463-468

    Article  PubMed  Google Scholar 

  20. Fuentes R et al (2018) Surgery versus stereotactic radiotherapy for people with single or solitary brain metastasis. Cochrane Database Syst Rev 8:CD012086

    PubMed  Google Scholar 

  21. Aupérin A et al (1999) Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. N Engl J Med 341:476–484

    Article  PubMed  Google Scholar 

  22. Liu L et al (2020) The role of prophylactic cranial irradiation in patients with non-small cell lung cancer: an updated systematic review and meta-analysis. Front Oncol 10:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang EL et al (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10:1037–1044

    Article  PubMed  Google Scholar 

  24. Soffietti R et al (2013) A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol Off J Am Soc Clin Oncol 31:65–72

    Article  Google Scholar 

  25. Besse B et al (2015) Bevacizumab in patients with nonsquamous non-small cell lung cancer and asymptomatic, untreated brain metastases (BRAIN): a nonrandomized, phase II study. Clin Cancer Res Off J Am Assoc Cancer Res 21:1896–1903

    Article  CAS  Google Scholar 

  26. Socinski MA et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378:2288–2301

    Article  CAS  PubMed  Google Scholar 

  27. Reck M et al (2016) Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med 375:1823–1833

    Article  CAS  PubMed  Google Scholar 

  28. Gandhi L et al (2018) Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med 378:2078–2092

    Article  CAS  PubMed  Google Scholar 

  29. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78

    Article  CAS  PubMed  Google Scholar 

  30. Cortinovis D et al (2019) Italian cohort of the nivolumab EAP in squamous NSCLC: efficacy and safety in patients With CNS metastases. Anticancer Res 39:4265–4271

    Article  CAS  PubMed  Google Scholar 

  31. Dudnik E et al (2016) Intracranial response to nivolumab in NSCLC patients with untreated or progressing CNS metastases. Lung Cancer Amst Neth 98:114–117

    Article  Google Scholar 

  32. Goldberg SB et al (2016) Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 17:976–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gauvain C et al (2018) Intracerebral efficacy and tolerance of nivolumab in non–small-cell lung cancer patients with brain metastases. Lung Cancer 116:62–66

    Article  PubMed  Google Scholar 

  34. Leighl NB et al (2020) CCTG BR.34: a randomized trial of durvalumab and tremelimumab +/- platinum-based chemotherapy in patients with metastatic (Stage IV) squamous or nonsquamous non-small cell lung cancer (NSCLC). J Clin Oncol 38:9502–9502

    Article  Google Scholar 

  35. Powell SF et al (2019) Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) in NSCLC with brain metastases: Pooled analysis of KEYNOTE-021, 189, and 407. Ann Oncol 30:v606–v607

    Article  Google Scholar 

  36. Wang X, Xu Y, Tang W, Liu L (2018) Efficacy and safety of radiotherapy plus EGFR-TKIs in NSCLC patients with brain metastases: a meta-analysis of published data. Transl Oncol 11:1119–1127

    Article  PubMed  PubMed Central  Google Scholar 

  37. Levy A et al (2018) Diversity of brain metastases screening and management in non-small cell lung cancer in Europe: results of the European Organisation for Research and Treatment of Cancer Lung Cancer Group survey. Eur J Cancer 93:37–46

    Article  PubMed  Google Scholar 

  38. Gaspar L et al (1997) Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int J Radiat Oncol 37:745–751

    Article  CAS  Google Scholar 

  39. Sperduto PW et al (2014) Secondary analysis of RTOG 9508, a phase 3 randomized trial of whole-brain radiation therapy versus WBRT plus stereotactic radiosurgery in patients with 1–3 brain metastases; poststratified by the graded prognostic assessment (GPA). Int J Radiat Oncol Biol Phys 90:526–531

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sperduto PW et al (2017) Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol 3:827–831

    Article  PubMed  Google Scholar 

  41. Bajard A et al (2004) Multivariate analysis of factors predictive of brain metastases in localised non-small cell lung carcinoma. Lung Cancer 45:317–323

    Article  CAS  PubMed  Google Scholar 

  42. Hayashi N et al (2017) Negative impact of leukoaraiosis on the incidence of brain metastases in patients with lung cancer. J Neurooncol 135:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liotta LA, Saidel GM, Kleinerman J (1976) Stochastic model of metastases formation. Biometrics 32:535–550

    Article  CAS  PubMed  Google Scholar 

  44. Hartung N et al (2014) Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice. Cancer Res 74:6397–6407

    Article  CAS  PubMed  Google Scholar 

  45. Baratchart E et al (2015) Computational modelling of metastasis development in renal cell carcinoma. PLoS Comput Biol 11:e1004626

    Article  PubMed  PubMed Central  Google Scholar 

  46. Benzekry S et al (2016) Modeling spontaneous metastasis following surgery: an in vivo-in silico approach. Cancer Res 76:535–547

    Article  CAS  PubMed  Google Scholar 

  47. Laird AK (1965) Dynamics of tumour growth: comparison of growth rates and extrapolation of growth curve to one cell. Br J Cancer 19:278–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Norton L (1988) A Gompertzian model of human breast cancer growth. Cancer Res 48:7067–7071

    CAS  PubMed  Google Scholar 

  49. Benzekry S et al (2014) Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol 10:e1003800

    Article  PubMed  PubMed Central  Google Scholar 

  50. Iwata K, Kawasaki K, Shigesada N (2000) A dynamical model for the growth and size distribution of multiple metastatic tumors. J Theor Biol 203:177–186

    Article  CAS  PubMed  Google Scholar 

  51. Schlicke P, Kuttler C, Schumann C (2021) How mathematical modeling could contribute to the quantification of metastatic tumor burden under therapy: insights in immunotherapeutic treatment of non-small cell lung cancer. Theor Biol Med Model 18:11

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nicolò C et al (2020) Machine learning and mechanistic modeling for prediction of metastatic relapse in early-stage breast cancer. JCO Clin Cancer Inform. https://doi.org/10.1200/CCI.19.00133

    Article  PubMed  Google Scholar 

  53. Cooley LS et al (2021) Experimental and computational modeling for signature and biomarker discovery of renal cell carcinoma progression. Mol Cancer 20:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Benzekry S, Sentis C, Coze C, Tessonnier L, André N (2021) Development and validation of a prediction model of overall survival in high-risk neuroblastoma using mechanistic modeling of metastasis. JCO Clin Cancer Inform. https://doi.org/10.1200/CCI.20.00092

    Article  PubMed  Google Scholar 

  55. Bilous M et al (2019) Quantitative mathematical modeling of clinical brain metastasis dynamics in non-small cell lung cancer. Sci Rep 9:13018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spratt JS, Meyer JS, Spratt JA (1995) Rates of growth of human solid neoplasms: Part I. J Surg Oncol 60:137–146

    Article  CAS  PubMed  Google Scholar 

  57. Vaghi C et al (2020) Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLOS Comput Biol 16:e1007178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bethge A, Schumacher U, Wree A, Wedemann G (2012) Are metastases from metastases clinical relevant? Computer modelling of cancer spread in a case of hepatocellular carcinoma. PLoS ONE 7:e35689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9:302–312

    Article  CAS  PubMed  Google Scholar 

  60. MathWorks: MATLAB Documentary GlobalSearch.

  61. Ugray Z et al (2007) Scatter search and local NLP solvers: a multistart framework for global optimization. Inf J Comput 19:328–340

    Article  Google Scholar 

  62. Bland JM, Altman DG (2004) The logrank test. BMJ 328:1073

    Article  PubMed  PubMed Central  Google Scholar 

  63. Davidson-Pilon C (2019) lifelines: survival analysis in Python. J Open Source Softw 4:1317

    Article  Google Scholar 

  64. Harrell FE, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387

    Article  PubMed  Google Scholar 

  65. Pope WB (2018) Brain metastases: neuroimaging. In: Handbook of clinical neurology. Elsevier, vol 149, pp. 89–112

  66. Brindle KM, Izquierdo-García JL, Lewis DY, Mair RJ, Wright AJ (2017) Brain tumor imaging. J Clin Oncol 35:2432–2438

    Article  CAS  PubMed  Google Scholar 

  67. Azin M, Demehri S (2022) STK11 loss: a novel mechanism for melanoma metastasis with therapeutic implications. J Invest Dermatol 142:1007–1009

    Article  CAS  PubMed  Google Scholar 

  68. Huang D et al (2018) Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev 37:173–187

    Article  CAS  PubMed  Google Scholar 

  69. Wikman H et al (2012) Relevance of PTEN loss in brain metastasis formation in breast cancer patients. Breast Cancer Res 14:R49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lohmann P et al (2020) PET/MRI radiomics in patients with brain metastases. Front Neurol 11:1

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhao S et al (2021) MRI radiomic signature predicts intracranial progression-free survival in patients with brain metastases of ALK-positive non-small cell lung cancer. Transl Lung Cancer Res 10:368–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang C-Y et al (2020) Radiomics as prognostic factor in brain metastases treated with Gamma Knife radiosurgery. J Neurooncol 146:439–449

    Article  CAS  PubMed  Google Scholar 

  73. Zhang J et al (2021) Computer tomography radiomics-based nomogram in the survival prediction for brain metastases from non-small cell lung cancer underwent whole brain radiotherapy. Front Oncol 10:610691

    Article  PubMed  PubMed Central  Google Scholar 

  74. Perlikos F, Harrington KJ, Syrigos KN (2013) Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Crit Rev Oncol Hematol 87:1–11

    Article  PubMed  Google Scholar 

  75. Retsky MW et al (1997) Computer simulation of a breast cancer metastasis model. Breast Cancer Res Treat 45:193–202

    Article  CAS  PubMed  Google Scholar 

  76. Pérez-García VM et al (2020) Universal scaling laws rule explosive growth in human cancers. Nat Phys 16:1232–1237

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ocaña-Tienda B et al (2023) Growth exponents reflect evolutionary processes and treatment response in brain metastases. Npj Syst Biol Appl 9:1–11

    Article  Google Scholar 

  78. Nakamura R et al (2014) Epidermal growth factor receptor mutations: effect on volume doubling time of non–small-cell lung cancer patients. J Thorac Oncol 9:1340–1344

    Article  CAS  PubMed  Google Scholar 

  79. Zhang R et al (2017) Volume doubling time of lung adenocarcinomas considering epidermal growth factor receptor mutation status of exon 19 and 21: three-dimensional volumetric evaluation. J Thorac Dis 9:4387–4397

    Article  PubMed  PubMed Central  Google Scholar 

  80. Robin TP et al (2018) Excellent outcomes with radiosurgery for multiple brain metastases in ALK and EGFR driven non-small cell lung cancer. J Thorac Oncol 13:715–720

    Article  PubMed  Google Scholar 

  81. Wu Y-L et al (2020) Osimertinib in resected EGFR -mutated non–small-cell lung cancer. N Engl J Med 383:1711–1723

    Article  CAS  PubMed  Google Scholar 

  82. Forde PM et al (2022) Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med. https://doi.org/10.1056/NEJMoa2202170

    Article  PubMed  PubMed Central  Google Scholar 

  83. Felip E et al (2021) Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. The Lancet 398:1344–1357

    Article  CAS  Google Scholar 

  84. Endo H, Inoue M (2019) Dormancy in cancer. Cancer Sci 110:474–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31:326–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gompertz B (1833) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies: In a letter to Francis Baily, Esq. FRS & c. Philos Trans R Soc Lond 2:252–253

    Google Scholar 

  87. Casey AE (1934) The experimental alteration of malignancy with an homologous mammalian tumor material. I: results with intratesticular inoculation. Am J Cancer 21:760

    Google Scholar 

Download references

Acknowledgements

PS wants to thank Christina Kuttler for valuable discussions on the mathematical modelling method. Supported by Deutsche Forschungsgemeinschaft (DFG) through TUM International Graduate School of Science and Engineering (IGSSE), GSC 81.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conceived the research idea: SB, PT. Model setup: PS, SB. Collected the data: ES, PT. Performed data analysis and presentation: PS. Wrote software to estimate parameters and simulate: PS, SB. The paper was written by ES and PS with editorial input from all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sébastien Benzekry.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Non-small cell lung cancer is difficult to manage when brain metastases are present. This study presents a mathematical model that can be calibrated on individual patients’ data early in the treatment course to explain the growth dynamics of brain metastases and demonstrates that the mathematically derived parameters can serve as predictive tool in clinical routine care.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzekry, S., Schlicke, P., Mogenet, A. et al. Computational markers for personalized prediction of outcomes in non-small cell lung cancer patients with brain metastases. Clin Exp Metastasis 41, 55–68 (2024). https://doi.org/10.1007/s10585-023-10245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-023-10245-3

Keywords

Navigation