Skip to main content
Log in

Ob/ob serum promotes a mesenchymal cell phenotype in B16BL6 melanoma cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

In 2009, malignant melanoma was responsible for approximately 9,000 deaths in the US. These deaths are often associated with aggressive metastasis to secondary sites such as the lungs. Epidemiological and animal studies suggest that obesity is a risk factor for melanoma. Others have shown that B16BL6 melanoma cells metastasize more aggressively in obese ob/ob than in lean mice. However, the mechanism by which obesity promotes B16BL6 melanoma metastasis in ob/ob mice has not been identified. In the present study, we used serum obtained from control and ob/ob leptin-deficient obese mice to determine if obese serum increases the aggressive phenotype of melanoma cells. Results showed that ob/ob serum has higher levels of resistin, insulin, tPAI1, IL-6, TNF-α, and MCP-1 compared to control serum. We showed that ob/ob serum increases the invasive ability of B16BL6 melanomas. To further determine the mechanism by which ob/ob serum increases the invasive ability of melanomas, we determined the effect of ob/ob and control serum on genes associated with the epithelial-to-mesenchymal transition (EMT). Cancer cells with a mesenchymal phenotype have a higher metastatic ability. Snai1 and Twist are genes that are strongly associated with EMT and metastasis of melanomas. Our results showed that ob/ob serum increases the expression of Snai1 and Twist. Moreover, ob/ob serum increased matrix metalloproteast 9 (MMP9) activity and decreased the expression of E-cadherin and the metastasis suppressor gene Kiss1. In summary, results suggest that obesity may increase the metastatic ability of melanoma by promoting a mesenchymal cell phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. American Cancer Society (2009) Cancer facts and figures 2009. Atlanta, Georgia

  2. Klimek VM, Wolchok JD, Chapman PB et al (2000) Systemic chemotherapy. Clin Plast Surg 27(3):451–461 ix-x

    PubMed  CAS  Google Scholar 

  3. Dennis L, Lowe J, Lynch C et al (2008) Cutaneous melanoma and obesity in the agricultural health study. Ann Epidemiol 18(3):214–221

    Article  PubMed  Google Scholar 

  4. Samanic C, Chow W, Gridley G et al (2006) Relation of body mass index to cancer risk in 362, 552 Swedish men. Cancer Causes Control 17(7):901–909

    Article  PubMed  Google Scholar 

  5. Mori A, Sakurai H, Choo M et al (2006) Severe pulmonary metastasis in obese and diabetic mice. Int J Cancer 119(12):2760–2767

    Article  PubMed  CAS  Google Scholar 

  6. Bonnomet A, Brysse A, Tachsidis A et al (2010) Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mammary Gland Biol Neoplasia 15(2):261–273

    Article  PubMed  Google Scholar 

  7. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428

    Article  PubMed  CAS  Google Scholar 

  8. Kang Y, Massagué J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118(3):277–279

    Article  PubMed  CAS  Google Scholar 

  9. Foubert E, De Craene B, Berx G (2010) Key signalling nodes in mammary gland development and cancer. The Snail1-Twist1 conspiracy in malignant breast cancer progression. Breast Cancer Res 12(3):206

    Article  PubMed  Google Scholar 

  10. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    Article  PubMed  CAS  Google Scholar 

  11. Przybylo JA, Radisky DC (2007) Matrix metalloproteinase-induced epithelial-mesenchymal transition: tumor progression at Snail’s pace. Int J Biochem Cell Biol 39(6):1082–1088

    Article  PubMed  CAS  Google Scholar 

  12. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67

    Article  PubMed  CAS  Google Scholar 

  13. Steeg P (2003) Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 3(1):55–63

    Article  PubMed  CAS  Google Scholar 

  14. Stafford L, Vaidya K, Welch D (2008) Metastasis suppressors genes in cancer. Int J Biochem Cell Biol 40(5):874–891

    Article  PubMed  CAS  Google Scholar 

  15. Albini A, Iwamoto Y, Kleinman H et al (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47(12):3239–3245

    PubMed  CAS  Google Scholar 

  16. Stattin P, Björ O, Ferrari P et al (2007) Prospective study of hyperglycemia and cancer risk. Diabetes Care 30(3):561–567

    Article  PubMed  Google Scholar 

  17. Ganapathi R, Grabowski D, Schmidt H et al (1987) Characterization in vitro and in vivo of progressively adriamycin-resistant B16-BL6 mouse melanoma cells. Cancer Res 47(13):3464–3468

    PubMed  CAS  Google Scholar 

  18. Wallert and Provost Lab (2007) MMP zymogen gel assay protocol

  19. Lindström P (2007) The physiology of obese-hyperglycemic mice [ob/ob mice]. Sci World J 7:666–685

    Google Scholar 

  20. Dubuc PU (1976) The development of obesity, hyperinsulinemia, and hyperglycemia in ob/ob mice. Metabolism 25(12):1567–1574

    Article  PubMed  CAS  Google Scholar 

  21. Stocks T, Lukanova A, Johansson M et al (2008) Components of the metabolic syndrome and colorectal cancer risk; a prospective study. Int J Obes (Lond) 32(2):304–314

    Article  CAS  Google Scholar 

  22. Dissanayake SK, Wade M, Johnson CE et al (2007) The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem 282(23):17259–17271

    Article  PubMed  CAS  Google Scholar 

  23. Ansieau S, Morel AP, Hinkal G et al (2010) TWISTing an embryonic transcription factor into an oncoprotein. Oncogene 29(22):3173–3184

    Article  PubMed  CAS  Google Scholar 

  24. Jordà M, Olmeda D, Vinyals A et al (2005) Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 118(Pt 15):3371–3385

    Article  PubMed  Google Scholar 

  25. Yan C, Wang H, Boyd D (2001) KiSS-1 represses 92-kDa type IV collagenase expression by down-regulating NF-kappa B binding to the promoter as a consequence of Ikappa Balpha -induced block of p65/p50 nuclear translocation. J Biol Chem 276(2):1164–1172

    Article  PubMed  CAS  Google Scholar 

  26. Shirasaki F, Takata M, Hatta N et al (2001) Loss of expression of the metastasis suppressor gene KiSS1 during melanoma progression and its association with LOH of chromosome 6q16.3–q23. Cancer Res 61(20):7422–7425

    PubMed  CAS  Google Scholar 

  27. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411(6835):375–379

    Article  PubMed  CAS  Google Scholar 

  28. Thiery J, Acloque H, Huang R et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    Article  PubMed  CAS  Google Scholar 

  29. Kuphal S, Palm HG, Poser I et al (2005) Snail-regulated genes in malignant melanoma. Melanoma Res 15(4):305–313

    Article  PubMed  CAS  Google Scholar 

  30. Poser I, Domínguez D, de Herreros AG et al (2001) Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 276(27):24661–24666

    Article  PubMed  CAS  Google Scholar 

  31. Alonso SR, Tracey L, Ortiz P et al (2007) A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res 67(7):3450–3460

    Article  PubMed  CAS  Google Scholar 

  32. Tse JC, Kalluri R (2007) Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 101(4):816–829

    Article  PubMed  CAS  Google Scholar 

  33. Pećina-Slaus N (2003) Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int 3(1):17

    Article  PubMed  Google Scholar 

  34. Vesuna F, van Diest P, Chen JH et al (2008) Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem Biophys Res Commun 367(2):235–241

    Article  PubMed  CAS  Google Scholar 

  35. Sullivan N, Sasser A, Axel A et al (2009) Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28(33):2940–2947

    Article  PubMed  CAS  Google Scholar 

  36. Wu Y, Deng J, Rychahou P et al (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15(5):416–428

    Article  PubMed  CAS  Google Scholar 

  37. Smith S, Theodorescu D (2009) Learning therapeutic lessons from metastasis suppressor proteins. Nat Rev Cancer 9(4):253–264

    Article  PubMed  CAS  Google Scholar 

  38. Lee J, Miele M, Hicks D et al (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst 88(23):1731–1737

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the American Cancer Society grant ACS RSG CNE-113703 and by grants from the National Institutes of Health: National Cancer Society grant NCI 1K22CA127519-01A1 and National Institute of Environmental Health Sciences Center grants ES09145 and ES007784.

Conflicts of interest

Authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nomelí P. Núñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kushiro, K., Núñez, N.P. Ob/ob serum promotes a mesenchymal cell phenotype in B16BL6 melanoma cells. Clin Exp Metastasis 28, 877–886 (2011). https://doi.org/10.1007/s10585-011-9418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9418-4

Keywords

Navigation