Skip to main content

Advertisement

Log in

Expression of a metastatic phenotype in IFNs-primed/TNFα-activated B16 murine melanoma cells: role of JAK1/PKCδ signal transduction factors

  • Original Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

In previous studies, we found that IFNγ and TNFα generated by activated macrophages stimulate the metastatic potential in F10-M3 cells, a clone isolated from B16-F10 murine melanoma line. In this phenomenon, TNFα promoted the expression of a metastatic phenotype in tumor cells previously primed with IFNγ. Here, we demonstrate that IFNα or IFNβ may replace IFNγ in priming tumor cells. We also noticed that an enhancement of the expression of p55TNFα receptor was associated with the preconditioning of tumor cells with IFNγ and IFNβ. By the use of an appropriate inhibitor, we observed that JAK1 signal transduction pathway was involved in the expression of a metastatic phenotype and of p55TNFα receptor shown in IFNγ- and IFNβ-primed melanoma cells stimulated with TNFα. Furthermore, the activity of the protein kinase C (PKC) was required for IFNγ-primed melanoma cells to express a metastatic phenotype after stimulation with TNFα. In conclusion, our study shows that a metastatic phenotype was expressed in B16 murine melanoma cells stimulated with TNFα regardless of whether the cells were primed with IFNγ IFNα or IFNβ. The molecular events leading to the expression of a metastatic phenotype in F10-M3 melanoma cells are represented by: (a) an enhanced expression of p55TNFα receptor in IFNs-primed tumor cells dependent on JAK1 signal transduction pathway; and (b) an intact PKC activity during TNFα stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379

    Article  PubMed  CAS  Google Scholar 

  2. Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    Article  PubMed  Google Scholar 

  3. van Kempen LC, Ruiter DJ, van Muijen GN, Coussens LM (2003) The tumor microenvironment: a critical determinant of neoplastic evolution. Eur J Cell Biol 82:539–548

    Article  PubMed  Google Scholar 

  4. Hsu MY, Meier F, Herlyn M (2002) Melanoma development and progression: a conspiracy between tumor and host. Differentiation 70:522–536

    Article  PubMed  CAS  Google Scholar 

  5. Andreasen PA, Kjoller L, Christensen L, Duffy MJ (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1–22

  6. Lync CC, Matrisian LM (2002) Matrix metalloproteinases in tumor-host cell communication. Differentiation 70:561–573

    Article  Google Scholar 

  7. Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev 4:11–22

    Article  CAS  Google Scholar 

  8. Robinson CR, Coussens LM (2005) Soluble mediators of inflammation during tumor development. Adv Cancer Res 93:159–187

    Article  PubMed  CAS  Google Scholar 

  9. Lazar-Molnar E, Hegyesi H, Toth S, Falus A (2000) Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 12:547–554

    Article  PubMed  CAS  Google Scholar 

  10. Bogenrieder T, Herlyn M (2002) Cell-surface proteolysis, growth factor activation and intercellular communication in the progression of melanoma. Crit Rev Oncol Hematol 44:1–15

    PubMed  Google Scholar 

  11. Cecconi O, Calorini L, Mannini A et al (1997) Enhancement of lung-colonizing potential of murine tumor cell lines co-cultivated with activated macrophages Clin Exp Metastas 15:94–101

    Article  CAS  Google Scholar 

  12. Calorini L, Mannini A, Bianchini F et al (1999) Biological properties associated with the enhanced lung-colonizing potential in a B16 murine melanoma line grown in a medium conditioned by syngeneic Corynebacterium parvum-elicited macrophages. Clin Exp Metastas 17:889–895

    Article  CAS  Google Scholar 

  13. Calorini L, Bianchini F, Mannini A et al (2002) IFN gamma and TNF alpha account for a pro-clonogenic activity secreted by activated murine peritoneal macrophages. Clin Exp Metastas 19:259–264

    Article  CAS  Google Scholar 

  14. Gattoni-Celli S, Calorini L, Simile M.M, Ferrone S (1993) Modulation by MHC Class I antigens of the biology of melanoma cells. Non-immunological mechanisms. Melanoma Res 3:285–289

    PubMed  CAS  Google Scholar 

  15. Chen TR (1977) In situ detection of Mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain, Exp Cell Res 104:255–262

    Article  PubMed  CAS  Google Scholar 

  16. Thompson JE, Cubbon RM, Cummings RT et al (2002) Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. Bioorg Med Chem Lett 12:1219–1223

    Article  PubMed  CAS  Google Scholar 

  17. Way KJ, Chou E, King GL (2000) Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci 21:181–187

    Article  PubMed  CAS  Google Scholar 

  18. Cox AD, Garcia AM, Westwick JK, Kowalczyk JJ, Lewis MD, Brenner DA, Der CJ (1994) The CAAX peptidomimetic compound B581 specifically blocks farnesylated, but not geranylgeranylated or myristylated, oncogenic ras signaling and transformation. J Biol Chem 269 (30):19203–19206

    Google Scholar 

  19. Zhuang L, Wang B, Shinder GA et al (1999) TNF receptor p55 plays a pivotal role in murine keratinocyte apoptosis induced by ultraviolet B irradiation. J Immunol 162:1440–1447

    PubMed  CAS  Google Scholar 

  20. Haliska FG, Tsao H, Wu H, Haluska FS et al (2006) Genetic alterations in signaling pathways in melanoma. Clin Cancer Res 12:2301s–2307s

    Article  Google Scholar 

  21. Billiau A (1996) Interferon-gamma: biology and role in pathogenesis. Adv Immunol 62:61–130

    Article  PubMed  CAS  Google Scholar 

  22. Johnson DR, Pober JS (1990) Tumor necrosis factor and immune interferon synergistically increase transcription of HLA class I heavy- and light-chain genes in vascular endothelium. Proc Natl Acad Sci USA 87:5183–5187

    Article  PubMed  CAS  Google Scholar 

  23. Tsujimoto M, Vilcek J (1986) Tumor necrosis factor receptors in HeLa cells and their regulation by interferon-gamma. J Biol Chem 261:5384–5388

    PubMed  CAS  Google Scholar 

  24. Carrel S, Hartmann F, Salvi S et al (1995) Expression of type A and B tumor necrosis factor (TNF) receptors on melanoma cells can be regulated by dbc-AMP and IFN gamma. Int J Cancer 62:76–83

    PubMed  CAS  Google Scholar 

  25. Mattei S, Colombo MP, Melani C et al (1994) Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer 56:853–857

    PubMed  CAS  Google Scholar 

  26. Ciotti P, Rainero ML, Nicolo G et al (1995) Cytokine expression in human primary and metastatic melanoma cells: analysis in fresh bioptic specimens. Melanoma Res 5:41–47

    Article  PubMed  CAS  Google Scholar 

  27. Moretti S, Pinzi C, Spallanzani A et al (1999) Immunohistochemical evidence of cytokine networks during progression of human melanocytic lesions. Int J Cancer 84:160–168

    Article  PubMed  CAS  Google Scholar 

  28. Dennis JU, Dean NM, Bennett CF et al (1998) Human melanoma metastasis is inhibited following ex vivo treatment with an antisense oligonucleotide to protein kinase C-alpha. Cancer Lett 128:65–70

    Article  PubMed  CAS  Google Scholar 

  29. La Porta CA, Di Dio A, Porro D Comolli R (2000) Overexpression of novel protein kinase C delta in BL6 murine melanoma cells inhibits the proliferative capacity in vitro but enhances the metastatic potential in vivo. Melanoma Res 10:93–102

    Article  PubMed  CAS  Google Scholar 

  30. Gschwendt M, Muller HJ, Kielbassa K et al (1994) Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 199:93–98

    Article  PubMed  CAS  Google Scholar 

  31. Kilpatrick LE, Song YH, Rossi MW, Korchak HM (2000) Serine phosphorylation of p60 tumor necrosis factor receptor by PKC-delta in TNF-alpha-activated neutrophils. Am J Physiol Cell Physiol 279:C2011–C2018

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from MURST 40%––Cofin 2003, Progetto di Ricerca di Ateneo Quota ex-60%, Ente Cassa di Risparmio di Firenze.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lido Calorini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchini, F., Mannini, A., Mugnai, G. et al. Expression of a metastatic phenotype in IFNs-primed/TNFα-activated B16 murine melanoma cells: role of JAK1/PKCδ signal transduction factors. Clin Exp Metastasis 23, 203–208 (2006). https://doi.org/10.1007/s10585-006-9030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9030-1

Keywords

Navigation