Skip to main content
Log in

Warnstorfia exannulata, an aquatic moss in the Arctic: seasonal growth responses

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The moss, Warnstorfia exannulata (Schimp.) Loeske, was first reported forming a carpet beside a water pool in Ny-Ålesund (78°56′N), Svalbard in 1959. Fifty years later, in 2008, it was found growing as an aquatic in a pool. The moss is sensitive to seasonal changes and exhibits a pattern of seasonal growth: summer stems with densely arranged leaves and lateral branches, and winter growth with short-leaved stems and no lateral branch. The mean daily increase in stem length is 0.68 mm in summer and 0.07 mm in winter. The longest specimens were up to 8 years old. The growth of the moss reflects closely seasonal temperature and growth conditions. World distribution is discussed and global distribution mapped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnell S, Mårtensson O (1959) A contribution to the knowledge of the bryophyte flora of W. Spitsbergen, and Kongsfjorden (King’s Bay, 79°N.) in particular. Ark Bot 2(4):105–163

    Google Scholar 

  • Beever JE (1995) Studies of Fissidens (Bryophyta: Musci) in New Zealand: F. strictus Hook. f. and Wils. and F. berteroi (Mont.) C. Muell., with a discussion of aquatic adaptations. N Z J Bot 33:291–299

    Article  Google Scholar 

  • Birks HJB, Jones VJ, Rose NL (2004) Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments–an introduction. J Paleolimnol 31:403–410

    Article  Google Scholar 

  • Brassard GR (1971) The mosses of northern Ellesmere Island, Arctic Canada. II. Annotated list of taxa. Bryologist 74:282–311

    Article  Google Scholar 

  • Douglas MSV, Smol JP (1994) Limnology of high Arctic ponds (Cape Herschel, Ellesmere Island, N.W.T.). Arch Hydrobiol 131(44):410–434

    Google Scholar 

  • Ellis LT, Bednarek-Ochyra H, Ochyra R et al (2011) New national and regional bryophyte records, 26. J Bryol 33(1):66–73

    Article  Google Scholar 

  • Frantz TC, Cordone AJ (1967) Observations on deepwater plants in Lake Tahoe, California and Nevada. Ecology 48:709–714

    Article  Google Scholar 

  • Frisvoll AA, Elvebakk A (1996) Part 2. Bryophytes. In: Elvebakk A, Prestrund P (eds) A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Norsk Polarinstitutt Skrifter 198: 57–172

  • Gerland S, Winther JG, Orbaek JB, Liston GE, Oritsland NA, Blanco A, Ivanov B (1999) Physical and optical properties of snow covering Arctic tundra on Svalbard. Hydrol Process 13(14–15):2331–2343

    Article  Google Scholar 

  • Glime JM, Raeymaekers G (1987) Temperature effects on branch and rhizoid production in six species of Fontinalis. J Bryol 14:779–790

    Google Scholar 

  • Hedenäs L (2003) Amblystegiaceae (Musci). Flora Neotropica Monogr 89:1–107

    Google Scholar 

  • Hondzo M, Stefan HG (1993) Regional water temperature characteristics of Lakes subjected to climate change. Clim Chang 24:187–211

    Article  Google Scholar 

  • Hu RL, Wang YF (2005) Flora bryophytorum sinicorum. In: Fan SQ, Han XZ, Huo CY (eds) Hypnobryales. Ministry of Science and Technology of China, 7: 52–54

  • Ilyashuk BP (2001) Growth and production of aquatic mosses in acidified lakes of Karelia Republic, Russia. Water Air Soil Poll 135:285–290

    Article  Google Scholar 

  • Imura S, Bando T, Seto K, Ohtani S, Kudoh S, Kanda H (2003) Distribution of aquatic mosses in the Sôya Coast region, East Antarctica. Polar Biosci 16:1–10

    Google Scholar 

  • Iversen T (1989) Some statistical properties of ground level air pollution at Norwegian Arctic stations and their relation to large scale atmospheric flow systems. Atmos Environ 23(11):2451–2462

    Article  Google Scholar 

  • Kanda H, Mochida Y (1992) Aquatic mosses found in lakes of the Skarvsnes region, Syowa Station area, Antarctica. Polar Biol 5:177–179

    Google Scholar 

  • Kings Bay AS (2008) Ny-Ålesund. http://www.kingsbay.no/index.php? option= com_content&view=article&id=70&Itemid=29

  • Kuc M (1973) Bryogeography of expedition area, Axel Heiberg Island, N.W.T., Canada. Bryophyt Bib 2:1–120

    Google Scholar 

  • Kudoh S, Kashino Y, Imura S (2003) Ecological studies of aquatic moss pillars in Antarctic lakes 3. Light response and chilling and heat sensitivity of photosynthesis. Polar Biosci 16:33–42

    Google Scholar 

  • Leu E, Wängberg SÅ, Wulff A, Falk-Petersen S, Ørbæk JB, Hessen DO (2006) Effects of changes in ambient PAR and UV radiation on the nutritional quality of an Arctic diatom (Thalassiosira antarctica var. borealis). J Exp Mar Biol Ecol 337(1):65–81

    Article  Google Scholar 

  • Li SP, Ochyra R, Wu PC, Seppelt D, Cai MH, Wang HY, Li CS (2009) Drepanocladus longifolius (Amblystegiaceae), an addition to the moss flora of King George Island, South Shetland Islands, with a review of Antarctic benthic mosses. Polar Biol 32:1415–1425

    Article  Google Scholar 

  • Liengen T, Olsen RA (1997) Seasonal and site-specific variations in nitrogen fixation in a high Arctic area, Ny-Ålesund, Spitsbergen. Can J Microbiol 43:759–769

    Article  Google Scholar 

  • Limpricht KG (1895) Die Laubmoose Deautschlands. Öesterreichs und der Schweiz. In: Rabenhorst L (ed) Kryptogamen-flora 4(2). E Kummer, Leipzig, pp 1–864

    Google Scholar 

  • Livingstone DM, Lotter AF (1998) The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. J Palaeolimn 19:181–198

    Article  Google Scholar 

  • Livingstone DM, Schanz F (1994) The effects of deep-water siphoning on a small, shallow lake: a long-term case study. Arch Hydrobiol 132:15–44

    Google Scholar 

  • Loeske L (1907) Drepanocladus, eine biologische Mischgattung. Hedwigia 46:300–321

    Google Scholar 

  • Luca M, Montacchini F, Buffa G (2003) Ecology of some mire and bog plant communities in the Western Italian Alps. J Limnol 62(1):88–96

    Google Scholar 

  • Mcintire CD, Phinney HK, Larson GL, Buretenica M (1994) Vertical distribution of a deep-water moss and associated epiphytes in Crater Lake, Oregon. Northwest Sci 68:11–21

    Google Scholar 

  • Mönkemeyer W (1927) Die laubmoose Europas. In: Rabenhorst L (ed) Kryptogamen-flora von Deutschland, Österreich und der Schweiz. IV. Akademische Verlagsgesellschaft, Leipzig, pp 1–960

    Google Scholar 

  • Muraoka H, Noda H, Uchida M, Ohtsuka T, Koizumi H, Nakatsubo T (2008) Photosynthetic characteristics and biomass distribution of the dominant evascular plant species in a high Arctic tundra ecosystem, Ny-Ålesund, Svalbard: implications for their role in ecosystem carbon gain. J Plant Res 121(1):137–145

    Article  Google Scholar 

  • O’Shea BJ (2006) Checklist of the mosses of sub-Saharan Africa (version 5, 12/06). Trop Bryol Res Rep 6:1–252

    Google Scholar 

  • Ochyra R (1995) A note on Amblystegium rotae (Musci, Amblystegiaceae). Fragm Florist Geobot 40:917–920

    Google Scholar 

  • Ochyra R, Matteri CM (2001) Bryophyta, musci: amblystegiaceae. Flora criptogámica de Tierra del Fuego. In: Guerrera SA, Gamundi de Amos IJ, Matteri CM (ed) Buenos Aires: consejo nacional de Investigaciones Clientíficasy Técnicas de la Republica Argentina, pp 1–96

  • Ochyra R, Bednarek-Ochyra H, Lewis Smith RI (2002) New and rare moss species from subantarctic South Georgia. Nova Hedwigia 74:121–147

    Article  Google Scholar 

  • Priddle J (1979) Morphology and adaptation of aquatic mosses in an Antarctic lake. J Bryol 10:517–531

    Google Scholar 

  • Priddle J (1980) The production ecology of benthic plants in some Antarctic lakes I. In situ production studies. J Ecol 68:141–153

    Article  Google Scholar 

  • Rice SK, Schuepp PH (1995) On the ecological and evolutionary significance of branch and leaf morphology in aquatic Sphagnum (Sphagnaceae). Amer J Bot 82:833–846

    Article  Google Scholar 

  • Riis T, Sand-Jensen K (1997) Growth reconstruction and photosynthesis of aquatic mosses: influence of light, temperature and carbon dioxide at depth. J Ecol 85:359–372

    Article  Google Scholar 

  • Scannet (2010) A circumarctic network of terrestrial field bases: Ny-Ålesund. http://www.scannet.nu/content/blogcategory/40/137/

  • Schindler DW, Smol JP (2006) Cumulative effects of climate warming and other human activities on freshwaters of Arctic and Subarctic North America. Ambio 35:160–168

    Article  Google Scholar 

  • Seppelt RD (1983) The status of the Antarctic moss Bryum korotkevicziae. Lindbergia 9:21–26

    Google Scholar 

  • Seppelt RD, Selkirk PM (1984) Effects of submersion on morphology and the implications of induced environmental modification on the taxonomic interpretation of selected Antarctic moss species. J Hattori Bot Lab 55:273–279

    Google Scholar 

  • Smol JP (1983) Paleophycology of a high Arctic lake Cape Herschel, Ellesmere Island. Can J Bot 61:2195–2204

    Article  Google Scholar 

  • Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Int Ver Limnol 23:837–844

    Google Scholar 

  • Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climatic change in the Arctic using lake sediments. Front Ecol Environ 5:466–474

    Article  Google Scholar 

  • Spence DHN (1975) Light and plant response in freshwater. In: Evans RB and Rockham O (eds) Light as an Ecological Factor: II. 16th Symposium of the British Ecological Society. Blackwell Scientific Publications, 93–133

  • Tuomikoski R (1949) über die Kollektivart Drepanocladus exannulatus (Br. Europ.) Warnst. Ann Bot Soc Zool-Bot Fenn Vanamo 23:1–44

    Google Scholar 

  • Tuomikoski R, Koponen T (1979) On the generic taxonomy of Calliergon and Drepanocladus (Musci, Amblystegiaceae). Ann Bot Fenn 16(3):213–222

    Google Scholar 

Download references

Acknowledgments

We wish to express our sincere gratitude to the Chinese Arctic and Antarctic Administration, the State Oceanic Administration of China. Many thanks also to the members of the 5th Chinese Antarctic Scientific Expedition teams for their help during the field work. We would like to thank Halina Bednarek-Ochyra for providing the drawings of the leaves. This study was supported by the International Co-operation Project of Chinese Arctic and Antarctic Administration (No. IC 201103), the Innovation Key Program of the Chinese Academy of Sciences (No. KSCX2-EW-J-1) and the National Natural Science Foundation of China (No. 41271222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Sen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, CQ., Ochyra, R., Wu, PC. et al. Warnstorfia exannulata, an aquatic moss in the Arctic: seasonal growth responses. Climatic Change 119, 407–419 (2013). https://doi.org/10.1007/s10584-013-0724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-013-0724-5

Keywords

Navigation