Skip to main content

Advertisement

Log in

Trade-offs associated with different modeling approaches for assessment of fish and shellfish responses to climate change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Considerable progress has been made in integrating carbon, nutrient, phytoplankton and zooplankton dynamics into global-scale physical climate models. Scientists are exploring ways to extend the resolution of the biosphere within these Earth system models (ESMs) to include impacts on global distribution and abundance of commercially exploited fish and shellfish. This paper compares different methods for modeling fish and shellfish responses to climate change on global and regional scales. Several different modeling approaches are considered including: direct applications of ESM’s, use of ESM output for estimation of shifts in bioclimatic windows, using ESM outputs to force single- and multi-species stock projection models, and using ESM and physical climate model outputs to force regional bio-physical models of varying complexity and mechanistic resolution. We evaluate the utility of each of these modeling approaches in addressing nine key questions relevant to climate change impacts on living marine resources. No single modeling approach was capable of fully addressing each question. A blend of highly mechanistic and less computationally intensive methods is recommended to gain mechanistic insights and to identify model uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Rose KA, Curchister EN, Fiechter J, Hedstrom K, Bernal M, Creekmore S, Ito SI, Lluch-Cota S, Haynie A, Megrey BA, Edwards C (In Prep) Demonstration of a fully-coupled end-to-end model for small pelagic fish using sardine and anchovy in the California Current. Manuscript available at Department of Oceanography and Coastal Sciences, 2135 Energy, Coast and Environment Building, Louisiana State University, Baton Rouge, LA 70803.

References

  • Allison EH, Perry AL, Badjeck M-C, Adger WN, Brown K, Conway D, Halls AS, Pilling GM, Reynolds JD, Andrew NL, Dulvy NK (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–196

    Article  Google Scholar 

  • A’mar ZT, Punt AE, Dorn MW (2009) The evaluation of two management strategies for the Gulf of Alaska walleye pollock fishery under climate change. ICES J Mar Sci 66:1614–1632

    Article  Google Scholar 

  • Aydin KY, McFarlane GA, King JR, Megrey BA, Myers KW (2005) Linking oceanic food webs to coastal production and growth rates of Pacific salmon (Oncorhynchus spp.), using models on three scales. Deep-Sea Res II 52:757–780

    Article  Google Scholar 

  • Barange M, Cheung WWL, Merino G, Perry RI (2010) Modelling the potential impacts of climate change and human activities on the sustainability of marine resources. Curr Opin Environ Sustain 2:1–8

    Article  Google Scholar 

  • Brown CJ, Schoeman DS, Sydeman WJ, Brander K, Buckley LB, Burrows M, Duarte CM, Moore PJ, Pandolfi JM, Poloczanska E, Venables W, Richardson AJ (2011) Quantitative approaches in climate change ecology. Global Change Biol 17:3697–3713

    Article  Google Scholar 

  • Buitenhuis ET, Rivkin RB, Sailley S, Le Quere C (2010) Biogeochemical fluxes through microzooplankton. Global Biogeochem Cycles 24:GB4015

    Article  Google Scholar 

  • Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fish. 10:235–251

    Google Scholar 

  • Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Zeller D, Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biol 16:24–35

    Article  Google Scholar 

  • Cheung WWL, Dunne J, Sarmiento JL, Pauly D (2011) Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J Mar Sci 68:1008–1018

    Article  Google Scholar 

  • Christensen V, Walters CJ (2004) Ecopath with Ecosim: methods, capabilities and limitations. Ecol Model 172:109–139

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdel IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  Google Scholar 

  • Delworth TL, Rosati A, Anderson WG, Adcroft A, Balaji V, Benson R, Dixon KW, Griffies SM, Lee HC, Pacanowski RC, Vecchi GA, Wittenberg AT, Zeng F, Zhang R (2012) Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J Climate 25:2755–2781

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contributions of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 499–587

    Google Scholar 

  • Drinkwater KF, Beaugrand G, Keriyama M, Kim S, Ottersen G, Perry RI, Portner HO, Polovina JJ, Takasuka A (2010) On the processes linking climate to ecosystem change. J Mar Syst 79:374–388

    Article  Google Scholar 

  • Fogarty M, Incze L, Hayhoe K, Mountain D, Manning J (2008) Potential climate change impacts on Atlantic cod (Gadus morhua) off the northeastern USA. Mitig Adapt Strateg Glob Chang 13:453–466

    Article  Google Scholar 

  • Follows MJ, Dutkiewicz S, Grant S, Chisholm SW (2007) Emergent biogeography of microbial communities in a model ocean. Science 315:1843–1846

    Article  Google Scholar 

  • Fournier DA, Skaug HJ, Ancheta J, Ianelli JN, Magnusson A, Maunder MN, Nielsen A, Sibert J (2011) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249

    Article  Google Scholar 

  • Frank KT, Petrie B, Fisher JAD, Leggett WC (2011) Transient dynamics of an altered large marine ecosystem. Nature 477:86–89

    Article  Google Scholar 

  • Friedland KD, Stock C, Drinkwater KF, Link JS, Leaf RT, Shank BV, Rose JM, Pilskaln CH, Fogarty MJ (2012) Pathways between primary production and fisheries yields of large marine ecosystems. PLoS One 7:e28945

    Article  Google Scholar 

  • Friedlingstein CPM, Betts RA, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones CD, Joos F, Kato T, Kawamiya M, Knoor W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schintzler K-G, Schunr R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353

    Article  Google Scholar 

  • Fulton EA (2010) Approaches to end-to-end ecosystem models. J Mar Syst 81:171–183

    Article  Google Scholar 

  • Fulton EA (2011) Interesting times: winners, losers, and system shifts under climate change around Australia. ICES J Mar Sci 68:1329–1342

    Article  Google Scholar 

  • Garcia SM, Cochrane KC (2005) Ecosystem approach to fisheries: a review of implementation guidelines. ICES J Mar Sci 62:311–318

    Article  Google Scholar 

  • Gregg WW, Friedrichs MAM, Robinson AR, Rose KA, Schlitzer R, Thompson KR, Doney SC (2009) Skill assessment in ocean biological data assimilation. J Mar Syst 76:16–33

    Article  Google Scholar 

  • Haidvogel DB, Arango H, Budgell WP, Cornuelle BD, Curchitser EN, Di Lorenzo E, Fennel K, Geyer WR, Hermann AJ, Lanerolle L, Levin J, McWilliams JC, Miller AJ, Moore AM, Powell TM, Shchepetkin AF, Sherwood CR, Signell RP, Warner JC, Wilkin J (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. J Comput Phys 227:3595–3624

    Article  Google Scholar 

  • Hare JA, Alexander MA, Fogarty MJ, Williams EH, Scott JD (2010) Forecasting the dynamics of a coastal fishery species using a coupled climate-population model. Ecol Appl 20:452–464

    Article  Google Scholar 

  • Haynie AC, Pfeiffer L (2012) Why economics matters for understanding the effects of climate change on fisheries. ICES J Mar Sci 69(7):1160–1167.

    Google Scholar 

  • Hollowed AB, Bond NA, Wilderbuer TK, Stockhausen WT, A’mar ZT, Beamish RJ, Overland JE, Schirripa MJ (2009) A framework for modeling fish and shellfish responses to future climate change. ICES J Mar Sci 66(7):1584–1594

    Article  Google Scholar 

  • Hollowed AB, Aydin KY, Essington TE, Ianelli JN, Megrey BA, Punt AE, Smith ADM (2011) Experience with quantitative ecosystem assessment tools in the northeast Pacific. Fish Fish 12:189–208

    Article  Google Scholar 

  • Ianelli J, Hollowed A, Haynie A, Mueter FJ, Bond NA (2011) Evaluating management strategies for eastern Bering Sea walleye pollock (Theragra chalcogramma) in a changing environment. ICES J Mar Sci 68:1297–1304

    Article  Google Scholar 

  • Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H, Emerson SR, Gruber N, Körtzinger A, Perry MJ, Riser SC (2009) Observing biogeochemical cycles at global scales with profiling floats. Oceanography 22:216–225

    Article  Google Scholar 

  • Jurado-Molina J, Livingston PA, Ianelli JN (2005) Incorporating predation interactions to a statistical catch-at-age model for a predator–prey system in the eastern Bering Sea. Can J Fish Aquat Sci 62:1865–1873

    Article  Google Scholar 

  • Kishi MJ, Kashiwai M, Ware DM, Megrey BA, Eslinger DL, Werner FE, Noguchi-Aita M, Azumaya T, Fujii M, Hashimoto S, Huang D, Iizumi H, Ishida Y, Kang S, Kantakov GA, Kim H, Komatsu K, Navrotsky VV, Smith SL, Tadokoro K, Tusda A, Yamamura O, Yamanaka Y, Yokouchi K, Yoshie N, Zhang J, Zuenko YI, Zvalinsky VI (2007) NEMURO-a lower trophic level model for the North Pacific marine ecosystem. Ecol Model 202:12–25

    Article  Google Scholar 

  • Kishi MJ, Ito S-i, Megrey BA, Rose KA, Werner FE (2011) A review of the NEMURO and NEMURO.FISH models and their application to marine ecosystem investigations. J Oceanogr 67:3–16

    Article  Google Scholar 

  • Le Borgne R, Allain V, Griffths SP, Matear RJ, McKinnon AD, Richardson AJ, Young JW (2011) Vulnerability of open ocean food webs in the tropical Pacific to climate change. In: Bell JD, Johnson JE, Hobday AJ (eds) Vulnerability of tropical Pacific fisheries and aquaculture to climate change. Secretaria of the Pacific Community, Noumea, pp 189–250

    Google Scholar 

  • Le Treut H, Gastineau G, Li L (2008) Uncertainties attached to global or local climate changes. Geoscience 340:584–590

    Article  Google Scholar 

  • Lehodey P, Senina I, Murtugudde R (2008) A spatial ecosystem and populations dynamics models (SEAPODYM)—modeling of tuna and tuna-like populations. Prog Oceanogr 78:304–318

    Article  Google Scholar 

  • Lehuta S, Mahévas S, Petitgas P, Pelletier D (2010) Combining sensitivity and uncertainty analysis to evaluate the impact of management measures with ISIS–Fish: marine protected areas for the Bay of Biscay anchovy (Engraulis encrasicolus) fishery. ICES J Mar Sci 67:1063–1075

    Article  Google Scholar 

  • Link JS, Ihde TF, Harvey CJ, Gaichas SK, Field JC, Brodziak JKT, Townsend HM, Peterman RM (2012) Dealing with uncertainty in ecosystem models: the paradox of use for living marine resource management. Prog Oceanogr 102:102–114

    Article  Google Scholar 

  • Little LR, Fulton EA, Gray R, Hayes D, Lyne V, Scott R, Sainsbury K, McDonald AD (2006) Multiple use management strategy evaluation for the North West Shelf: results and discussion. North West Shelf joint environmental management study. Technical Report 14, CSIRO, Hobart, Tasmania. p 516

  • Maunder MN, Harley SJ, Hampton J (2006) Including parameter uncertainty in forward projections of computationally intensive statistical dynamic models. ICES J Mar Sci 63:969–979

    Article  Google Scholar 

  • Maury O (2010) An overview of APECOSM, a spatialized mass balanced “Apex Predators ECOSystem Model” to study physiologically structured tuna population dynamics in their ecosystem. Prog Oceanogr 84:113–117

    Article  Google Scholar 

  • McDonald AD, Fulton EA, Little LR, Gray R, Sainsbury K, Lyne V (2006) Multiple-use management strategy evaluation for coastal marine ecosystems using in vitro. In: Perez P, Batten D (eds) Complex science for a complex world: exploring human ecosystems with agents. Aust Nat Univ, Canberra, pp 283–298

    Google Scholar 

  • Megrey BA, Rose K, Klumb R, Hay DE, Werner FE, Eslinger DL, Smith SL (2007) A bioenergetic/population dynamics model of Pacific herring (Clupea harengus pallasi) coupled to a lower trophic level nutrient–phytoplankton–zooplankton model: dynamics, description, validation and sensitivity analysis. Ecol Model 202:144–164

    Article  Google Scholar 

  • Merino G, Barange M, Mullon C (2010) Climate variability and change scenarios for a marine commodity: modelling small pelagic fish, fisheries and fishmeal in a globalized market. J Mar Syst 81:196–205

    Article  Google Scholar 

  • Merino G, Barange M, Rodwell L, Mullon C (2011) Modelling the sequential geographical exploitation and potential collapse of marine fisheries through economic globalization, climate change and management alternatives. Sci Mar 75:779–790

    Article  Google Scholar 

  • Mitra A, Davis C (2010) Defining the “to” in end-to-end models. Prog Oceanogr 84:39–42

    Article  Google Scholar 

  • Mueter FJ, Bond NA, Ianelli JN, Hollowed AB (2011) Expected declines in recruitment of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea under future climate change. ICES J Mar Sci 68:1284–1296

    Article  Google Scholar 

  • Murphy EJ, Cavanagh RD, Hofmann EE, Hill SL, Constable AJ, Costa DP, Pinkerton MH, Johnston NM, Trathan PN, Klinck JM, Wolf-Gladrow DA, Daly KL, Maury O, Doney SC (2012) Developing integrated models of Southern Ocean food webs: including ecological complexity, accounting for uncertainty and the importance of scale. Prog Oceanogr 102:74–92

    Article  Google Scholar 

  • Nye JA, Link JS, Hare JA, Overholtz W (2009) Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar Ecol Prog Ser 393:111–129

    Article  Google Scholar 

  • O’Brien TD (2010) COPEPOD: the global plankton database. An overview of the 2010 database contents, processing methods, and access interface. U.S. Dep. Commerce, NOAA Tech. Memo., NMFS-F/ST-36

  • Overland JE, Wang M, Bond NA, Walsh JE, Kattsov VM, Chapman WL (2011) Considerations in the selection of global climate models for regional climate projections: the arctic as a case study. J Climate 24:1583–1597

    Article  Google Scholar 

  • Plagányi ÉE, Bell JD, Bustamante RH, Dambacher JM, Dennis DM, Dichmont CM, Dutra LXC, Fulton EA, Hobday AJ, Ingrid van Putten E, Smith F, Smith ADM, Zhou S (2011) Modelling climate-change effects on Australian and Pacific aquatic ecosystems: a review of analytical tools and management implications. Mar Freshw Res 62:1132–1147

    Article  Google Scholar 

  • Planque B, Bellier E, Loots C (2011) Uncertainties in projecting spatial distirbutions of marine populations. ICES J Mar Sci 68:1045–1050

    Article  Google Scholar 

  • Polovina JJ, Dunne JP, Woodworth PA, Howell EA (2011) Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES J Mar Sci 68:986–995

    Article  Google Scholar 

  • Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893

    Article  Google Scholar 

  • Punt AE (2011) The impact of climate change on the performance of rebuilding strategies for overfished groundfish species on the U.S. west coast. Fish Fish 109:320–329

    Google Scholar 

  • Punt AE, Hilborn R (1997) Fisheries stock assessment and decision analysis: the Bayesian approach. Rev Fish Biol Fish 7:35–63

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov VM, Pitman A, Shukla J, Srinvasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 589–662

    Google Scholar 

  • Ressler PH, De Robertis A, Warren JD, Smith JN, Kotwicki S (2012) Developing an acoustic survey of euphausiids to understand trophic interactions in the Bering Sea ecosystem. Deep-Sea Res II 65–70:184–195

    Article  Google Scholar 

  • Rykaczewski R, Dunne JP (2010) Enhanced nutrient supply to the California Current ecosystem with global warming and increased stratification in an earth system model. Geophys Res Lett 37:L21606

    Article  Google Scholar 

  • Ryther JH (1969) Photosynthesis and fish production in the sea. Science 166:72–76

    Article  Google Scholar 

  • Schirripa MJ, Goodyear CP, Methot RM (2009) Testing different methods of incorporating climate data into the assessment of US west coast sablefish. ICES J Mar Sci 66:1605–1613

    Article  Google Scholar 

  • Schnute JT, Maunder MN, Ianelli JN (2007) Designing tools to evaluate fishery management strategies: can the scientific community deliver? ICES J Mar Sci 64:1077–1084

    Google Scholar 

  • Sheldon RW, Prakash A., Sutcliffe Jr. WH (1972) Distribution of particles in the ocean. Limnology and oceanography 17(2):327–340

    Google Scholar 

  • Shin Y-J, Cury P (2004) Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Can J Fish Aquat Sci 61:414–431

    Article  Google Scholar 

  • Simpson SD, Jennings S, Johnson Mark P, Blanchard Julia L, Schön P-J, Sims David W, Genner Martin J (2011) Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr Biol 21:1565–1570

    Article  Google Scholar 

  • Spencer PD (2008) Density-independent and density-dependent factors affecting temporal changes in spatial distributions of eastern Bering Sea flatfish. Fish Oceanogr 17:396–410

    Article  Google Scholar 

  • Steele JH, Hofmann EE, Gifford DJ (2012) End-to-end models: management applications. Prog Oceanogr 102:1–4

    Article  Google Scholar 

  • Steinacher M, Joos F, Frolicher TL, Bopp L, Cadule P, Cocco V, Doney SC, Chelen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005

    Article  Google Scholar 

  • Stock C, Dunne J (2010) Controls on the ratio of mesozooplankton production to primary production in marine ecosystems. Deep-Sea Res I 57:95–112

    Article  Google Scholar 

  • Stock CA, Alexander MA, Bond NA, Brander KM, Cheung WWL, Curchitser EN, Delworth TL, Dunne JP, Griffies SM, Haltuch MA, Hare JA, Hollowed AB, Lehodey P, Levin SA, Link JS, Rosem KA, Rykaczewski RR, Sarmiento JL, Stouffer RJ, Schwing FB, Vecchi GA, Werner FE (2011) On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog Oceanogr 88:1–27

    Article  Google Scholar 

  • Vidussi F, Mostajir B, Fouilland E, Le Floc’h E, Nouguier J, Roques C, Got P, Thibault-Botha D, Bouvier T, Troussellier M (2011) Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnol Oceanogr 56:206–218

    Article  Google Scholar 

  • Welch DW, Ishida Y, Nagasawa K (1998) Thermal limits and ocean migrations of sockeye salmon (Oncorhynchus nerka): long-term consequences of global warming. Can J Fish Aquat Sci 55:937–948

    Article  Google Scholar 

  • Zhang CI, Hollowed AB, Lee JB, Kim DH (2011) An IFRAME approach for assessing impacts of climate change on fisheries. ICES J Mar Sci 68:1318–1328

    Article  Google Scholar 

Download references

Acknowledgments

The inspiration for this paper came from discussions during the International Workshop on Climate and Oceanic Fisheries Rarotonga, Cook Islands 3–5 October 2011. We are grateful for the support provided to attend this workshop and the hospitality of the citizens of Raratonga. We are also grateful to Patricia Livingston, Kerim Aydin and three anonymous reviewers who provided useful comments and suggestions that improved this manuscript. This paper is NPRB publication 378 and BEST-BSIERP Bering Sea Project publication 77.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Babcock Hollowed.

Additional information

This article is part of the Special Issue on “Climate and Oceanic Fisheries” with Guest Editor James Salinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollowed, A.B., Curchitser, E.N., Stock, C.A. et al. Trade-offs associated with different modeling approaches for assessment of fish and shellfish responses to climate change. Climatic Change 119, 111–129 (2013). https://doi.org/10.1007/s10584-012-0641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-012-0641-z

Keywords

Navigation