Skip to main content

Advertisement

Log in

Expected changes in agroclimatic conditions in Central Europe

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

During the past few decades, the basic assumption of agroclimatic zoning, i.e., that agroclimatic conditions remain relatively stable, has been shattered by ongoing climate change. The first aim of this study was to develop a tool that would allow for effective analysis of various agroclimatic indicators and their dynamics under climate change conditions for a particular region. The results of this effort were summarized in the AgriClim software package, which provides users with a wide range of parameters essential for the evaluation of climate-related stress factors in agricultural crop production. The software was then tested over an area of 114,000 km2 in Central Europe. We have found that by 2020, the combination of increased air temperature and changes in the amount and distribution of precipitation will lead to a prolonged growing season and significant shifts in the agroclimatic zones in Central Europe; in particular, the areas that are currently most productive will be reduced and replaced by warmer but drier conditions in the same time the higher elevations will most likely experience improvement in their agroclimatic conditions. This positive effect might be short-lived, as by 2050, even these areas might experience much drier conditions than observed currently. Both the rate and the scale of the shift are amazing as by 2020 (assuming upper range of the climate change projections) only 20–38% of agriculture land in the evaluated region will remain in the same agroclimatic and by 2050 it might be less than 2%. On the other hand farmers will be able to take advantage of an earlier start to the growing season, at least in the lowland areas, as the proportion of days suitable for sowing increases. As all of these changes might occur within less than four decades, these issues could pose serious adaptation challenges for farmers and governmental policies. The presented results also suggest that the rate of change might be so rapid that the concept of static agroclimatic zoning itself might lose relevance due to perpetual change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

 

  • Allen GA, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO, Rome, Irrigation and Drainage Paper No 56, p 300

  • Allen GA, Walter IA, Elliot RL, Howell TA (2005) ASCE standardized reference evapotranspiration equation. American Society of Civil Engineers, Reston, p 216

    Google Scholar 

  • Assad ED, Pintor HS, Junior JZ et al (2004) Climatic changes impact in agroclimatic zoning of coffee in Brazil. Pesqui Agropecu Bras 39:1057–1064

    Article  Google Scholar 

  • Brázdil R, Trnka M, Dobrovolný P, Chromá K, Hlavinka P, Žalud Z (2009) Variability of droughts in the Czech Republic, 1881–2006. Theor Appl Climatol 97:297–315

    Article  Google Scholar 

  • BMLFW - Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (2007) Digitaler Hydrologischer Atlas von Österreich. BMLFW, Vienna

    Google Scholar 

  • Brown JA (1976) Shortening of growing season in the US corn belt. Nature 260:420–421

    Article  Google Scholar 

  • Calanca P (2007) Climate change and drought occurrence in the Alpine region. How severe are becoming the extremes? Glob Planet Change 57:151–160

    Article  Google Scholar 

  • Chmielewski FM, Köhn W (2000) Impact of weather on yield and yield components of winter rye. Agric For Meteorol 102:101–112

    Article  Google Scholar 

  • Cooper G, McGechan MB, Vinten JA (1997) The influence of a changed climate on soil workability and available workdays in Scotland. J Agric Eng Res 68:253–269

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130

    Article  Google Scholar 

  • Dubrovský M, Buchtele J, Zalud Z (2004) High-frequency and low-frequency variability in stochastic daily weather generator and its effect on agricultural and hydrologic modelling. Clim Change 63:145–179

    Article  Google Scholar 

  • Dubrovský M, Nemešová I, Kalvová J (2005) Uncertainties in climate change scenarios for the Czech Republic. Clim Res 29:139–156

    Article  Google Scholar 

  • Dvořák V, Hladný J, Kašpářek L (1997) Climate change hydrology and water resources impact and adaptation for selected river basins in the Czech Republic. Clim Change 36:93–106

    Article  Google Scholar 

  • Eitzinger J, Štastná M, Žalud Z, Dubrovský M (2003) A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agric Water Manag 61:163–234

    Article  Google Scholar 

  • Eitzinger J, Kersebaum C, Formayer H (2009) Landwirtschaft im Klimawandel. Agrimedia, Clenze, pp 129–150 (in German)

    Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. doi:10.1029/2005RG000183

    Article  Google Scholar 

  • Fisher G, van Velthuizen H, Nachtergaele F, Medow S (2000) Global agro-ecological zones (Global-AEZ). CD-ROM FAO/IIASA, Retrieved 22.2.2008 from: http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGL/agll/gaez/index.htm

  • Harvey LDD, Gregory J, Hoffert M, Jain A et al (1997) An introduction to simple climate models used in the IPCC second assessment report. IPCC Tech Paper 2, Intergovernmental Panel on Climate Change, Geneva

  • Harlfinger O, Knees G (1999) Klimahandbuch der oesterreichischen bodenschaetzung. Mitteilung der Oesterreichischen Bodenkundlichen Gesellschaft, Heft 58, p 196

    Google Scholar 

  • Hayes M, Trnka M, Svoboda M, Hlavinka P, Balek J, Dubrovský M, Wilhite D, Pokorný E, Bartošová L, Eitzinger J (2007) Understanding regional climate change consequences through the changes in soil moisture regimes. In: 25th annual meeting of American geosciences union, 10–14th December 2007, San Francisco

  • Hlavinka P, Trnka M, Semerádová D, Dubrovský M, Možný M, Žalud Z (2009) Drought effects on the seasonal yield variability of key crops in the Czech Republic. Agric For Meteorol 149:431–442

    Article  Google Scholar 

  • Holden NM, Brereton AJ (2004) Definition of agroclimatic regions in Ireland using hydro-thermal and crop yield data. Agric For Meteorol 122:175–191

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate change 2001: the scientific basis. In: Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

  • Hulme M, Wigley TML, Barrow EM, Raper SCB, Centella A, Smith S, Chipanshi AC (2000) Using a climate scenario generator for vulnerability and adaptation assessments: MAGICC and SCENGEN version 2.4 workbook. Climatic Research Unit, Norwich

    Google Scholar 

  • Kalvová J, Kašpárek L, Janouš D, Žalud Z, Kazmarová H (eds) (2002) Climate change induced impacts on water regime, agriculture, forestry and human health in the Czech Republic (in Czech). National Climatic Program of the Czech Republic, Prague, p 151

    Google Scholar 

  • Kořistka K (1860) Die Markgrafachaft Mahren un das Her-zogthum Schlesien, Wien-Olmutz (in the Moravian Archive Brno)

  • Kruijt B, Witte J-PM, Jacobs CMJ, Kroon T (2008) Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: a practical approach for the Netherlands. J Hydrol 349:257–267

    Article  Google Scholar 

  • Kurpelová M, Coufal L, Čulík J (1975) Agroklimatické podmienky ČSSR (Agroclimatological conditions of the Czechoslovakia – In Slovak with English Summary). Hydrometeorological Institute, Bratislava, p 267

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin, p 513

    Google Scholar 

  • Leenhardt D, Lemaire Ph (2002) Estimating the spatial and temporal distribution of sowing dates for regional water management. Agric Water Manag 55:37–52

    Article  Google Scholar 

  • Linderholm HW, Walther A, Chen DL (2008) Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Clim Change 87:405–419

    Article  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002. doi:10.1088/1748-9326/2/1/014002

    Article  Google Scholar 

  • Maton L, Bergez JE, Leenhardt D (2007) Modelling the days which are agronomically suitable for sowing maize. Eur J Agron 27:123–129

    Article  Google Scholar 

  • Mellander P, Löfvenius MO, Laudon H (2007) Climate change impact on snow and soil temperature in boreal Scots pine stands. Clim Change 85:179–193

    Article  Google Scholar 

  • Mitchell TD, Hulme M (2002) Length of growing season. Weather 57:196–198

    Google Scholar 

  • Murer E, Wagenhofer J, Aigner F, Pfeffer M (2004) Die nutzbare Feldkapazität der mineralischen Böden der landwirtschaftlichen Nutzfläche Österreichs. In: Schriftenreihe BAW, vol 20, pp 72–78

  • Němec J (1996) Aktualizace úřední ceny zemědělské půdy u vybraného souboru BPEJ (Update of the official price level of farm land for selected land-environmental units). Report by the Research Institute of Agriculture Economics, Prague, p 98

  • Němec J (2001) Bonitace a oceňování zemědělské půdy České republiky (Assessment and evaluation of farm land in the Czech Republic-In Czech with English summary) Research Institute of Agriculture Economics, p 260

  • Olesen J, Bindi M (2002) Consequences of climate change for European agriculture productivity, landuse and policy. Eur J Agron 16:239–262

    Article  Google Scholar 

  • Olesen J, Fronzek S, Heidmann T, Hickler T, Holt T, Minguez MI, Morales P, Palutikov J, Quemada M, Ruiz-Ramos M, Rubæk G, Sau F, Smith B, Sykes M (2007) Uncertainties in projected impacts of climate change on European agriculture and ecosystems based on scenarios from regional climate models. Clim Change 81:123–143

    Article  Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC, Skejvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2010) Climate change impacts on European crop production and adaptation options as foreseen by agronomy experts. Eur J Agron. doi:10.1016/j.eja.2010.11.003

    Google Scholar 

  • Orlandini S, Nejedlík P, Eitzinger J, Alexandrov V, Toulios L, Calanca P, Trnka M, Olesen J (2008) Impacts of climate change and variability on European agriculture: results of inventory analysis in COST 734 countries. Ann N Y Acad Sci 1146:338–353

    Article  Google Scholar 

  • Perarnaud V, Seguin B, Malezieux E, Deque M, Loustau D (2008) Agrometeorological research and applications needed to prepare agriculture and forestry to 21st century chmate change. Clim Change 70:319–340

    Article  Google Scholar 

  • Petr J (1991) Weather and yield. Developments in crop science 20. Elsevier, Amsterdam and New York, pp 288. ISBN 0-444-98803-3

    Google Scholar 

  • Piao SL, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biochem Cycles 21:GB3018. doi:10.1029/2006GB002888

    Google Scholar 

  • Reidsma P (2007) Adaptation to climate change: European agriculture. PhD Thesis Wageningen University, Wageningen, The Netherlands, p 204

  • Rijks D (1994) Agroclimatic characterization. In: Griffiths JE (ed) Handbook of agricultural meteorology. Oxford Univ. Press, Oxford, pp 231–244

    Google Scholar 

  • Rounsevell MDA (1993) A review of soil workability models and their limitations in temperate regions. Soil Use Manage 9:15–21

    Article  Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications. I. Hydrologicalbalance, canopy gas exchange and primary production processes. Ecol Model 42:125–154

    Article  Google Scholar 

  • Santer BD, Wigley TML, Schlesinger ME, Mitchell JFB (1990) Developing climate scenarios from equilibrium GCM results. Report No 47, Max Planck Institute für Meteorologie, Hamburg

  • Santibáňez F (1994) Crop requirements—temperate crops. In: Griffiths JE (ed) Handbook of agricultural meteorology. Oxford Univ. Press, Oxford, pp 174–188

    Google Scholar 

  • Spekat A, Enke W, Kreienkamp F (2007) Neuentwicklung von regional hoch aufgelösten Wetterlagen für Deutschland und Bereitstellung regionaler Klimaszenarios auf der Basis von globalen Klimasimulationen mit dem Regionalisierungsmodell WETTREG auf der Basis von globalen Klimasimulationen mit ECHAM5/MPI-OM T63L31 2010-2100 für die SRES-Szenarios B1, A1B und A2. Publ. d. UBA, Dessau, p 149

  • Štěpánek P (2006) AnClim—software for time series analysis (for Windows). Dept. of Geography, Fac. of Natural Sciences, Masaryk University, Brno. 1.47 MB. http://www.climahom.eu/AnClim.html

  • Štěpánek P (2007) ProClimDB—software for processing climatological datasets. CHMI, regional office Brno. http://www.climahom.eu/ProcData.html

  • Thaler S, Eitzinger J, Dubrovský M, Trnka M (2008) Climate change impacts on selected crops in Marchfeld, Eastern Austria, In: 28th conference on agricultural and forest meteorology, 28 April–2 May, Orlando, USA. http://ams.confex.com/ams/28Hurricanes/techprogram/paper_138941.htm

  • Thornton PE, Hasenauer H, White MA (2000) Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: an application over complex terrain in Austria. Agric For Meteorol 104:255–271

    Article  Google Scholar 

  • Tomášek M (2000) Půdy České republiky (Soils of the Czech Republic). Czech Geological Service, Prague, p 109

    Google Scholar 

  • Trnka M, Dubrovsky M, Zalud Z (2004) Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Clim Change 64:227–255

    Article  Google Scholar 

  • Trnka M, Muška F, Semerádová D, Dubrovský M, Kocmánková E, Žalud Z (2007) European corn borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecol Model 207:61–84

    Article  Google Scholar 

  • Trnka M, Eitzinger J, Dubrovský M et al (2010a) Is the rainfed crop production in Central Europe at risk? - Using a regional climate model to produce high resolution agroclimatic information for decision makers. J Agric Sci 148:639–656

    Article  Google Scholar 

  • Trnka M, Kocmánková E, Balek J et al (2010b) Simple snow cover model for agrometeorological applications. Agric For Meteorol 150:1115–1127

    Article  Google Scholar 

  • Trnka M, Olesen JE, Kersebaum KC, Skjelvag AO, Eitzinger J, Seguin B, Peltonen-Sainio P, Orlandini S, Dubrovsky M, Hlavinka P, Balek J, Eckersten H, Cloppet E, Calanca P, Rotter R, Gobin A, Vucetic V, Nejedlik P, Kumar S, Lalic B, Mestre A, Rossi F, Alexandrov V, Kozyra J, Schaap B, Zalud Z (2011) Agroclimatic conditions in Europe under climate change. Glob Change Biol. doi:10.1111/j.1365-2486.2011.02396.x

  • van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834

    Article  Google Scholar 

  • White DH, Lubulwa G, Menz K, Zuo H, Wint W, Slingenbergh J (2001) Agroclimatic classification systems for estimating the global distribution of livestock numbers and commodities. Environ Int 27:181–187

    Article  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Trnka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trnka, M., Eitzinger, J., Semerádová, D. et al. Expected changes in agroclimatic conditions in Central Europe. Climatic Change 108, 261–289 (2011). https://doi.org/10.1007/s10584-011-0025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-011-0025-9

Keywords

Navigation