Skip to main content

Advertisement

Log in

Modelling Regional Climate Change Effects On Potential Natural Ecosystems in Sweden

Climatic Change Aims and scope Submit manuscript

Abstract

This study aims to demonstrate the potential of a process-based regional ecosystem model, LPJ-GUESS, driven by climate scenarios generated by a regional climate model system (RCM) to generate predictions useful for assessing effects of climatic and CO2 change on the key ecosystem services of carbon uptake and storage. Scenarios compatible with the A2 and B2 greenhouse gas emission scenarios of the Special Report on Emission Scenarios (SRES) and with boundary conditions from two general circulation models (GCMs) – HadAM3H and ECHAM4/OPYC3 – were used in simulations to explore changes in tree species distributions, vegetation structure, productivity and ecosystem carbon stocks for the late 21st Century, thus accommodating a proportion of the GCM-based and emissions-based uncertainty in future climate development. The simulations represented in this study were of the potential natural vegetation ignoring direct anthropogenic effects. Results suggest that shifts in climatic zones may lead to changes in species distribution and community composition among seven major tree species of natural Swedish forests. All four climate scenarios were associated with an extension of the boreal forest treeline with respect to altitude and latitude. In the boreal and boreo-nemoral zones, the dominance of Norway spruce and to a lesser extent Scots pine was reduced in favour of deciduous broadleaved tree species. The model also predicted substantial increases in vegetation net primary productivity (NPP), especially in central Sweden. Expansion of forest cover and increased local biomass enhanced the net carbon sink over central and northern Sweden, despite increased carbon release through decomposition processes in the soil. In southern Sweden, reduced growing season soil moisture levels counterbalanced the positive effects of a longer growing season and increased carbon supply on NPP, with the result that many areas were converted from a sink to a source of carbon by the late 21st century. The economy-oriented A2 emission scenario would lead to higher NPP and stronger carbon sinks according to the simulations than the environment-oriented B2 scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aber, J. D.: 1992, ‘Nitrogen cycling and nitrogen saturation in temperate forest ecosystems’, Trends in Ecology and Evolution 7, 220–224.

    Article  Google Scholar 

  • Ainsworth, E. A. and Long, S. P.: 2005, ‘What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2′, New Phytologist 165, 351–372.

    Article  Google Scholar 

  • Alcamo, J., Ash, N. J., Butler, C. D., Callicot, J.B., Capistrano, D., Carpenter, S. R., Castilla, J. C., Chambers, R., Chopra, K., Cropper, A., Daily, G. C., Dasgupta, P., De Groot, R., Dietz, T., Duraiappah, A. K., Gadgil, M., and Hamilton, K.: 2003, Millennium Ecosystem Assessment. Ecosystems and Human Well-being: A framework for Assessment, Island Press, Washington DC, 245.

    Google Scholar 

  • Bachelet, D., Neilson, R. P., Hickler, T., Drapek R. J., Lenihan, J. M., Sykes, M. T., Smith, B., Sitch, S., and Thonicke, K.: 2003, ‘Simulating past and future dynamics of natural ecosystems in the United States’, Global Biogeochemical Cycles 17, 1045.

    Article  Google Scholar 

  • Badeck, F. W., Lischke, H. K., Bugmann, H., Hickler, T., Hönninger, K., Lasch, P., Lexer, M. J., Mouillot, F., Schaber, J., and Smith, B.: 2001, ‘Tree species composition in European pristine forests. Comparison of stand data to model predictions’, Climatic Change 51, 307–347.

    Article  Google Scholar 

  • Bergh, J., Freeman, M., Sigurdsson, B., Kellomäki, S., Laitinen, K., Niinisto, S., Peltola, H., and Linder, S.: 2003, ‘Modelling the short-term effects of climate change on the productivity of selected tree species in Nordic countries’, Forest Ecology and Management 183, 327–340.

    Article  Google Scholar 

  • Bergh, J., Linder, S., Lundmark, T., and Elfving, B.: 1999, ‘The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden’, Forest Ecology and Management 119, 51–62.

    Article  Google Scholar 

  • Bradshaw, R. H. W., Holmqvist, B. H., Cowling, S. A., and Sykes, M. T.: 2000, ‘The effects of climate change on the distribution and management of Picea abies in southern Scandinavia’, Canadian Journal of Forest Research 30, 1992–1998.

    Article  Google Scholar 

  • Bringfelt, B., Räisänen, J., Gollvik, S., Lindström, G., Graham, P. L., and Ullerstig, A.: 2001, ‘The land surface treatment for the Rossby Centre Regional Atmospheric Climate Model — version 2 (RCA2) No. 98.’ Norrköping, Swedish Meteorological and Hydrological Institute : 40.

    Google Scholar 

  • Bugmann, H. K. M.: 1994, ‘On the ecology of mountainous forest in a changing climate: A simulation study’. Swiss Federal Institute of Technology. Zurich: 258.

  • Bugmann, H. K. M.: 2001, ‘A review of forest gap models’, Climatic Change 51, 259–305.

    Article  Google Scholar 

  • Canadell, J., Ingram, J., and Noble, I.: 1998, ‘IGBP Report 47. Global change and terrestrial ecosystems. Implementation plan’.

  • Ceulemans, R., Jach, M. E., Van De Velde, R., Lin, J.X., and Stevens, M.: 2002, ‘Elevated atmospheric CO2 alters wood production, wood quality and wood strength of Scots pine (Pinus sylvestris L) after three years of enrichment’, Global Change Biology 8, 153–162.

    Article  Google Scholar 

  • Christensen, O. B., Christensen, J. H., Machenhauer, B., and Botzet, M.: 1998, ‘Very high-resolution regional climate simulations over Scandinavia — Present climate’, Journal of Climate 11, 3204–3229.

    Article  Google Scholar 

  • Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., and vans den Belt, M.: 1997, ‘The value of the world's ecosystem services and natural capital’, Nature 387, 253–260.

    Article  Google Scholar 

  • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A., and Young-Molling, C.: 2001, ‘Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models’, Global Change Biology 7, 357–373.

    Article  Google Scholar 

  • Cubasch, U., Meehl, G. A., Boer, G. J., Stouffer, R. J., Dix, M., Noda, A., Senior, C. A., Raper, S., and Yap, K. S.: 2001, ‘Chapter 9: Projections of future climate change’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge.

    Google Scholar 

  • Daily, G. C.: 1997, ‘Introduction: What are ecosystem services?’ in Daily, G. C. (eds.), Nature's Services: Societal Dependence on Natural Systems, Island Press, Washington DC, p. 392.

    Google Scholar 

  • Daily, G. C., Alexander, S., Ehrlich, P. R., Goulder, L., Lubchenco, J., Matson, P. A., Mooney, H. A., Postel, S., Schneider, S. H., Tilman, D., and Woodwell, G. M.: 1997, ‘Ecosystem services: benefits supplied to human societies by natural ecosystems’, Issues in Ecology 2, 1–16.

    Google Scholar 

  • Drake, B. G., Gonzales-Meler, M. A., and Long, S. P.: 1997, ‘More efficient plants: a consequence of rising atmospheric CO2?’ Annual Reviews of Plant Physiology and Plant Molecular Biology 48, 609–639.

    Article  Google Scholar 

  • Ewel, K. C., Twilley, R. R., and Ong, J. E.: 1998, ‘Different kinds of mangrove forests provide different goods and services’, Global Ecology and Biogeography Letters 7, 83–94.

    Article  Google Scholar 

  • FAO: 1991, ‘The digitized soil map of the world (release 1.0). Vol. 67/1’, Food and Agriculture Organization of the United Nations.

  • Finzi, A. C., DeLucia, E. H., Hamilton, J. G., Richter, D. D., and Schlesinger, W. H.: 2002, ‘The nitrogen budget of a pine forest under free air CO2 enrichment’, Oecologia 132, 567–578.

    Article  Google Scholar 

  • Fleming, R. A., and Volney, J. A.: 1995, ‘Effects of climate change on insect defoliator population processes in Canada's boreal forest: Some plausible scenarios’, Water, Air, and Soil Pollution 82, 445–454.

    Article  Google Scholar 

  • Fulton, M. R.: 1991, ‘Adult recruitment as a function of juvenile growth rate in size-structured plant populations’, Oikos 62, 102–105.

    Google Scholar 

  • Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: 2004, ‘Terrestrial vegetation and water balance — hydrological evaluation of a dynamic global vegetation model’, Journal of Hydrology 286, 249–270.

    Article  Google Scholar 

  • Giorgi, F., Hewitson, B., Christensen, J., Hulme, M., Von Storch, H., Whetton, P., Jones, R., Mearns, L., and Fu, C.: 2001, ‘Chapter 10: Regional climate information — evaluation and projections’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C.A. (eds.), Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge.

    Google Scholar 

  • Gower, T., Krankina, O., Olson, R. J., Apps, M., Linder, S., and Wang, C.: 2001, ‘Net primary production and cabon allocation patterns of Boreal forest ecosystems’, Ecological Applications 11, 1395–1411.

    Article  Google Scholar 

  • Hättenschwiler, S., Handa, I. T., Egli, L., Asshoff, R., Ammann, W., and Körner, C.: 2002, ‘Atmospheric CO2 enrichment of alpine treeline conifers’, New Phytologist 156, 363–375.

    Article  Google Scholar 

  • Haxeltine, A., and Prentice, I. C.: 1996, ‘BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types’, Global Biogeochemical Cycles 10, 693–709.

    Article  Google Scholar 

  • Heimann, M., Esser, G., Haxeltine, A., Kaduk, J., Kicklighter, D.W., Knorr, W., Kohlmaier, G. H., McGuire, A. D., Melillo, J., Moore, B., Otto, R. D., Prentice, I. C., Sauf, W., Schloss, A., Sitch, S., Wittenberg, U., and Wurth, G.: 1998, ‘Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2 — First results of a model intercomparison study’, Global Biogeochemical Cycles 12, 1–24.

    Article  Google Scholar 

  • Hickler, T.: 2004, ‘Towards an integrated ecology thorough mechanistic modelling of ecosystem structure and functioning’. Department of Pysical Geography and Ecosystems Analysis. Lund University, Lund, p. 170.

    Google Scholar 

  • Hickler, T., Smith, B., Sykes, M. T., Davis, M. B., Sugita, S., and Walker, K.: 2004, ‘Using a generalized vegetation model to simulate vegetation dynamics in the western Great Lakes region, USA, under alternative disturbance regimes’, Ecology 2, 519–530.

    Google Scholar 

  • Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y., and Field, C. B.: 2003, ‘Nitrogen and Climate Change’, Science 302, 1512–1513.

    Article  Google Scholar 

  • IPCC: 1996, ‘The Regional Impacts of Climate Change: An Assessment of Vulnerability’, in Watson, R. T., Zinyowera, M. C., and Moss, R. H. (eds.), Cambridge University Press, Cambridge.

    Google Scholar 

  • IPCC: 2001a, ‘Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Cambridge University Press, Cambridge.

    Google Scholar 

  • IPCC: 2001b, ‘Intergovernmental Panel on Climate Change. Climate Change 2001: Impacts, Adaptation and Vulnerability.’ in McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., and White, K. S. (eds.), Cambridge University Press, Cambridge.

    Google Scholar 

  • IPCC: 2001c, ‘Climate Change 2001: Synthesis Report’, in Watson, R. T. (eds.), Cambridge University Press, Cambridge.

    Google Scholar 

  • Jalas, J., and Suominen, J. (eds.): 1972–1999, Atlas florae Europaeae : distribution of vascular plants in Europe, The Committee for mapping the flora of Europe and Societas biologica Fennica Vanamo, Helsinki.

  • Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G. K., Gerber, S., and Hasselmann, K. F.: 2001, ‘Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios’, Global Biogeochemical Cycles 15, 891–907.

    Article  Google Scholar 

  • Karjalainen, T.: 1996, ‘The carbon sequestration potential of unmanaged forest stands in Finland under changing climatic conditions’, Biomass and Bioenergy 10, 313–329.

    Article  Google Scholar 

  • Kellomäki, S., and Kolström, M.: 1993, ‘Computations on the yield of timber by Scots pine when subjected to varying levels of thinning under a changing climate in southern Finland’, Forest Ecology and Management 59, 237–255.

    Article  Google Scholar 

  • Körner, C.: 1998, ‘A re-assessment of high elevation treeline positions and their explanation’, Oecologia 115, 445–459.

    Article  Google Scholar 

  • Kullman, L.: 1997, ‘Tree-limit stress and disturbance: A 25 year survey of geoecological change in the Scandes mountains of Sweden’, Geografiska Annaler 79A, 139–165.

    Article  Google Scholar 

  • Kullman, L.: 2002, ‘Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes’, Journal of Ecology 90, 68–77.

    Article  Google Scholar 

  • LaMarche, V. C., Graybill, D. A., Fritts, H. C., and Rose, M. R.: 1984, ‘Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation’, Science 225, 1019–1021.

    Google Scholar 

  • Landsberg, J.: 2003, ‘Modelling forest ecosystems: state of the art, challenges, and future directions’, Canadian Journal of Forest Research 33, 385–397.

    Article  Google Scholar 

  • Leemans, R., and Prentice, I. C.: 1989, ‘FORSKA, a general forest succession model’. Meddelanden Från Växtbiologiska Institution. Uppsala. 2.

  • Ljungemyr, P., Gustafsson, N., and Omstedt, A.: 1996, ‘Parameterization of lake thermodynamics in a high resolution weather forecasting model’, Tellus 48A, 608–621.

    Google Scholar 

  • Lucht, W., Prentice, I. C., B. Myneni, R., Sitch, S., Friedlingstein, P., Cramer, W., Bousquet, P., Buermann, W., and Smith, B.: 2002, ‘Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect’, Science 296, 1687–1689.

    Article  Google Scholar 

  • McGregor, J. L.: 1997, ‘Regional climate modelling’, Meteorol. Atmos. Phys. 63, 105–117.

    Article  Google Scholar 

  • McGuire, A. D., Melillo, J. M., Joyce, L. A., Kicklighter, D. W., Grace, A. L., Moore III, B., and Vorosmarty, C. J.: 1992, ‘Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America’, Global Biogeochemical Cycles 6, 101–124.

    Google Scholar 

  • Mearns, L. O., Hulme, M., Carter, T. R., Leemans, R., Lal, M., and Whetton, P.: 2001, ‘Chapter 13: Climate scenario development’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge.

    Google Scholar 

  • Meier, H. E. M.: 2002a, ‘Regional ocean climate simulations with a 3D ice-ocean model for the Baltic Sea. Part 1: model experiments and results for temperature and salinity’, Climate Dynamics 19, 237–253.

    Article  Google Scholar 

  • Meier, H. E. M.: 2002b, ‘Regional ocean climate simulations with a 3D ice-ocean model for the Baltic Sea. Part 2: results for sea ice’, Climate Dynamics 19, 255–266.

    Article  Google Scholar 

  • Meier, H. E. M., Döscher, R., Coward, A. C., Nycander, J., and Döös, K.: 1999, ‘RCO — Rossby Centre regional Ocean climate model: model description (version 1.0) and first results from the hindcast period 1992/93. Reports Oceanography No. 26’. Norrköping, Sweden, Swedish Meteorological and Hydrological Institute: 102.

  • Melillo, J. M.: 1999, ‘Warm, warm on the range’, Science 283, 183–184.

    Article  Google Scholar 

  • Moberg, A., and Alexandersson, H.: 1997, ‘Homogenization of Swedish temperature data. Part II: Homogenized gridded air temperature compared with a subset of global gridded air temperature since 1861’, International Journal of Climatology 17, 35–54.

    Article  Google Scholar 

  • Morales, P., Sykes, M. T., Prentice, I. C., Smith, P., Smith, B., Bugmann, H., Zierl, B., Friedlingstein, P., Viovy, N., Sabaté, S., Sánchez, A., Pla, E., Gracia, C.A., Sitch, S., Arneth, A., and Ogee, J.: In press, ‘Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes’, Global Change Biology.

  • Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Raihi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Dadi, Z., eds: 2000, Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.

    Google Scholar 

  • National Board of Forestry: 2003, ‘Forests in Sweden’, National Board of Forestry. 2004.

  • New, M., Hulme, M., and Jones, P. D.: 2000, ‘Representing twentieth century space-time climate variability. Part2: development of 1901–1996 monthly grids of terrestrial surface climate’, Journal of Climate 13, 2217–2238.

    Article  Google Scholar 

  • Nijkamp, P.: 1999, ‘Environment and regional economics’, in van den Bergh, J. C. J. M. (eds.), Handbook of Environmental and Resource Economics, Edward Elgar, Chetenham, UK.

    Google Scholar 

  • Niklasson, M., and Drakenberg, B.: 2001, ‘A 600-year tree-ring history form Kvill National Park, southern Sweden — implications for conservation strategies in the hemiboreal’, Biological conservation, 63–71.

  • Niklasson, M., and Granstörm, A.: 2000, ‘Numbers and sizes of fires: Lond-term spatially explicit fire history in a Swedish boreal landscape’, Ecology 81, 1484–1499.

    Article  Google Scholar 

  • Norby, R. J., Ogle, K., Curtis, P. S., Badeck, F.-W., Huth, A., Hurtt, G. C., Kohyama, T., and Penuelas, J.: 2001, ‘Aboveground growth and competition in forest gap models: an analysis for studies of climatic change’, Climatic Change 51, 415–447.

    Article  Google Scholar 

  • Odin, J., Eriksson, B., and Perttu, K.: 1983, ‘Temperature climate maps for Swedish forestry’. Uppsala, Institute for Forest Soil Science, Swedish Agricultural University. 45: 57.

    Google Scholar 

  • Poorter, H., and Navas, M.-L.: 2003, ‘Plant growth and competition at elevated CO2: on winners, losers and functional groups’, New Phytologist 157, 175–198.

    Article  Google Scholar 

  • Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quere, C., Scholes, R. J., and Wallace, D. W. R.: 2001, ‘Chapter 3: The carbon cycle and atmospheric carbon dioxide’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge.

    Google Scholar 

  • Prentice, I. C., and Helmisaari, H.: 1991, ‘Silvics of north European trees: Compilation, comparisons and implications for forest succession modelling’, Forest Ecology and Management 42, 79–93.

    Article  Google Scholar 

  • Prentice, I. C., Sykes, T. M., and Cramer, W.: 1991, ‘The Possible Dynamic Response of Northern Forests to Global Warming’, Global Ecology and Biogeography Letters 1, 129–135.

    Article  Google Scholar 

  • Prentice, I. C., Sykes, M. T., and Cramer, W.: 1993, ‘A simulation model for the transient effects of climate change on forest landscapes’, Ecological Modelling 65, 51–70.

    Article  Google Scholar 

  • Räisänen, J., Hansson, U., Ullerstig, A., Döscher, R., Graham, L. P., Jones, C., Meier, M., Samuelsson, P., and Willen, U.: 2003, ‘GCM driven simulations of recent and future climate with the Rossby Centre coupled atmosphere — Baltic Sea regional climate model RCAO. Reports Meteorology and Climatology (RMK), No. 101’. Norrköping, Swedish Meteorological and Hydrological Institute61.

  • Schimel, D., Melillo, J., Tian, H., McGuire, A. D., Kicklighter, D., Kittel, T., Rosenbloom, N., Running, S., Thornton, P., Ojima, D., Parton, W., Kelly, R., Sykes, M.T., Neilson, R., and Rizzo, B.: 2000, ‘Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States’, Science 287, 2004–2006.

    Article  Google Scholar 

  • Schröter, D., Cramer, W., Leemans, R., Prentice, I. C., Araújo, M. B., Arnell, N. W., Bondeau, A., Bugmann, H., Carter, T., Garcia, C. A., de la Vega-Leinert, A. C., Erhard, M., Ewert, F., Glendining, M., House, J. I., Kankaanpää, S., Klein, R. J. T., Lavorel, S., Marcus Lindner, Metzger, M. J., Meyer, J., Mitchell, T., Reginster, I., Rounsevell, M., Sabaté, S., Stephen Sitch, Smith, B., Smith, J., Smith, P., Sykes, M. T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S., and Zierl, B.: In press, ‘Ecosystem Service Supply and Human Vulnerability to Global Change in Europe’, Science.

  • Shaw, M. R., Zavaleta, E. S., Chiarello, N. R., Cleland, E. E., Mooney, H. A., and Field, C. B.: 2002, ‘Grassland responses to global environmental changes suppressed by elevated CO2’, Science 298, 1987–1990.

    Article  Google Scholar 

  • Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer W., Kaplan, J., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: 2003, ‘Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model’, Global Change Biology 9, 161–185.

    Article  Google Scholar 

  • Sjörs, H.: 1956, Nordisk växtgeografi, Svenska Bokförlaget/Bonniers, Stockholm.

    Google Scholar 

  • Skre, O.: 1972, ‘High temperature demands for growth and development in Norway spruce (Picea abies (L.) Karst.) in Scandinavia’, Agricultural University of Norway: 29.

  • SMHI: 2004, ‘Annual mean temperature’, Swedish Meteorological and Hydrological Institute, http://www.smhi.se.

  • Smith, B., Prentice, I. C., and Sykes, M. T.: 2001, ‘Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space’, Global Ecology and Biogeography 10, 621–637.

    Article  Google Scholar 

  • Stocks, B. J., Fosberg, M. A., Lynham, T. J., Mearns, L., Wotton, B. M., Yang, Q., Jin, J.-Z., Lawrence, K., Hartley, G. R., Mason, J. A., and McKenney, D. W.: 1998, ‘Climate change and forest fire potential in Russian and Canadian boreal forests’, Climatic Change 38, 1–13.

    Article  Google Scholar 

  • SWECLIM: 2003, ‘SWECLIM Swedish Climate Modelling Programme's year 2002 Report’, SMHI.

  • Sykes, M. T.: 2001, ‘Modelling the potential distribution and community dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud.) in Scandinavia’, Forest Ecology and Management, 69–84.

  • Sykes, M. T., and Prentice, I. C.: 1995, ‘Boreal forest futures: modelling the controls on tree species range limits and transient responses to climate change’, Water Air Soil Pollution, 415–428.

  • Sykes, M. T., and Prentice, I. C.: 1996a, ‘Carbon storage and climate change in Swedish forests: a comparison of static and dynamic modelling approaches’, in Apps, M. J., and Price, D. T. (eds.), Forest Ecosytems, Forest Managment and the Global Carbon Cycle, Springer-Verlag, Belin Heidelberg.

    Google Scholar 

  • Sykes, M. T., and Prentice, I. C.: 1996b, ‘Climate change, tree species distributions and forest dynamics: A case study in the mixed conifer/northern hardwoods zone of northern Europe’, Climatic Change 34, 161–177.

    Article  Google Scholar 

  • Sykes, M. T., and Prentice, I. C.: 1999, ‘Modelling the effect of climate change on Swedish forests.’ Report No:5029, Swedish Environmental Protection Agency: p. 42.

  • Sykes, M. T., Prentice, I. C., and Cramer, W.: 1996, ‘A bioclimatic model for the potential distribution of north European tree species under present and future climates’, Journal of Biogeography 23, 203–233.

    Google Scholar 

  • Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M., and Webb, D. A., eds: 1964–1980, Flora Europaea, Cambridge University Press, Cambridge.

    Google Scholar 

  • UN-ECE/FAO: 2000, ‘Forest Resources of Europe, CIS, North America, Australia, Japan and New Zealand. Main Report. Geneve Timber and Forest Study Papers, No. 17’, United Nations Economic Commission for Europe (Geneva), Food and Agriculture Organization of the United Nations, Rome.

  • White, A., Cannell, M. G. R., and Friend, A. D.: 2000, ‘The high-latitude terrestrial carbon sink: a model analysis’, Global Change Biology 6, 227–245.

    Article  Google Scholar 

  • Zackrisson, O.: 1977, ‘Influence of forest fires on the North Swedish boreal forest’, Oikos 29, 22–32.

    Google Scholar 

  • Zaehle, S., Sitch, S., Smith, B., and Hatterman, F.: In press, ‘Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics’, Global Biogeochemical Cycles.

  • Zheng, D., Prince, S., and Hame, T.: 2004, ‘Estimating net primary production of boreal forests in Finland and Sweden from field data and remote sensing’, Journal of Vegetation Science 15, 161–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Koca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koca, D., Smith, B. & Sykes, M.T. Modelling Regional Climate Change Effects On Potential Natural Ecosystems in Sweden. Climatic Change 78, 381–406 (2006). https://doi.org/10.1007/s10584-005-9030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-9030-1

Keywords

Navigation