Skip to main content
Log in

Karyotypic relationships in Asiatic asses (kulan and kiang) as defined using horse chromosome arm-specific and region-specific probes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Cross-species chromosome painting has been applied to most of the species making up the numerically small family Equidae. However, comparative mapping data were still lacking in Asiatic asses kulan (Equus hemionus kulan) and kiang (E. kiang). The set of horse arm-specific probes generated by laser microdissection was hybridized onto kulan (E. hemionus kulan) and kiang (E. kiang) chromosomes in order to establish a genome-wide chromosomal correspondence between these Asiatic asses and the horse. Moreover, region-specific probes were generated to determine fusion configuration and orientation of conserved syntenic blocks. The kulan karyotype (2n = 54) was ascertained to be almost identical to the previously investigated karyotype of onager E. h. onager (2n = 56). The only difference is in fusion/fission of chromosomes homologous to horse 2q/3q, which are involved in chromosome number polymorphism in many Equidae species. E. kiang karyotype differs from the karyotype of E. hemionus by two additional fusions 8q/15 and 7/25. Chromosomes equivalent to 2q and 3q are not fused in kiang individuals with 2n = 52. Several discrepancies in centromere positions among kulan, kiang and horse chromosomes have been described. Most of the chromosome fusions in Asiatic asses are of centromere–centromere type. Comparative chromosome painting in kiang completed the efforts to establish chromosomal homologies in all representatives of the family Equidae. Application of region-specific probes allows refinement comparative maps of Asiatic asses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2n:

diploid number of chromosomes

BAC:

bacterial artificial chromosome

EAS:

Equus asinus

ECA:

Equus caballus

EHK:

Equus hemionus kulan

EKI:

Equus kiang

EZH:

Equus zebra hartmannae

pd:

distal part of the p-arm

pp:

proximal part of the p-arm

qd:

distal part of the q-arm

qp:

proximal part of the q-arm

References

  • Avise JC, Robinson TJ (2008) Hemiplasy: a new term in the lexicon of phylogenetics. Syst Biol 57:503–507

    Article  PubMed  Google Scholar 

  • Brinkmeyer-Langford C, Raudsepp T, Lee EJ et al (2005) A high-resolution physical map of equine homologs of HSA19 shows divergent evolution compared with other mammals. Mamm Genome 16:631–649

    Article  PubMed  CAS  Google Scholar 

  • Carbone L, Nergadze SG, Magnani E et al (2006) Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 87:777–782

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962

    Article  PubMed  CAS  Google Scholar 

  • Goh G, Raudsepp T, Durkin K et al (2007) High-resolution gene maps of horse chromosomes 14 and 21: additional insights into evolution and rearrangements of HSA5 homologs in mammals. Genomics 89:89–112

    Article  PubMed  CAS  Google Scholar 

  • Kruger K, Gaillard C, Stranzinger G, Rieder S (2005) Phylogenetic analysis and species allocation of individual equids using microsatellite data. J Anim Breed Genet 122:78–86

    Article  PubMed  Google Scholar 

  • Kubickova S, Cernohorska H, Musilova P, Rubes J (2002) The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res 10:571–577

    Article  PubMed  CAS  Google Scholar 

  • Meltzer PS, Guan XY, Burgess A, Trent JM (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nat Genet 1:24–28

    Article  PubMed  CAS  Google Scholar 

  • Musilova P, Kubickova S, Zrnova E, Horin P, Vahala J, Rubes J (2007) Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes. Chromosome Res 15:807–813

    Article  PubMed  CAS  Google Scholar 

  • Myka JL, Lear TL, Houck ML, Ryder OA, Bailey E (2003) Homologous fission event(s) implicated for chromosomal polymorphisms among five species in the genus Equus. Cytogenet Genome Res 102:217–221

    Article  PubMed  CAS  Google Scholar 

  • Nickerson E, Nelson DL (1998) Molecular definition of pericentric inversion breakpoints occurring during the evolution of humans and chimpanzees. Genomics 50:368–372

    Article  PubMed  CAS  Google Scholar 

  • Nowak RM (1999) Walker’s mammals of the world, vol. 2, 6th edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • O’Brien SJ, Menninger JC, Nash WG (2006) Atlas of mammalian chromosomes. Wiley-Liss, Hoboken

    Book  Google Scholar 

  • Oakenfull EA, Clegg JB (1998) Phylogenetic relationships within the genus Equus and the evolution of α and θ globin genes. J Mol Evol 47:772–783

    Article  PubMed  CAS  Google Scholar 

  • Oakenfull EA, Lim HN, Ryder OA (2000) A survey of equid mitochondrial DNA: Implications for the evolution, genetic diversity and cinservation of Equus. Conserv Genet 1:341–355

    Article  CAS  Google Scholar 

  • Raudsepp T, Chowdhary BP (1999) Construction of chromosome-specific paints for meta- and submetacentric autosomes and the sex chromosomes in the horse and their use to detect homologous chromosomal segments in the donkey. Chromosome Res 7:103–114

    Article  PubMed  CAS  Google Scholar 

  • Raudsepp T, Fronicke L, Scherthan H, Gustavsson I, Chowdhary BP (1996) Zoo-FISH delineates conserved chromosomal segments in horse and man. Chromosome Res 4:218–225

    Article  PubMed  CAS  Google Scholar 

  • Raudsepp T, Christensen K, Chowdhary BP (2000) Cytogenetics of donkey chromosomes: nomenclature proposal based on GTG-banded chromosomes and depiction of NORs and telomeric sites. Chromosome Res 8:659–670

    Article  PubMed  CAS  Google Scholar 

  • Raudsepp T, Lear TL, Chowdhary BP (2002) Comparative mapping in equids: the asine X chromosome is rearranged compared to horse and Hartmann’s mountain zebra. Cytogenet Genome Res 96:206–209

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Messaoudi C, Lombard M, Dutrillaux B (2001) Chromosome homologies between man and mountain zebra (Equus zebra hartmannae)and description of a new ancestral synteny involving sequences homologous to human chromosomes 4 and 8. Cytogenet Cell Genet 93:291–296

    Article  PubMed  CAS  Google Scholar 

  • Robinson TJ, Ruiz-Herrera A, Avise JC (2008) Hemiplasy and homoplasy in the karyotypic phylogenies of mammals. Proc Natl Acad Sci USA 105:14477–14481

    Article  PubMed  CAS  Google Scholar 

  • Rubes J, Pagacova E, Kopecna O et al (2007) Karyotype, centric fusion polymorphism and chromosomal aberrations in captive-born mountain reedbuck (Redunca fulvorufula). Cytogenet Genome Res 116:263–268

    Article  PubMed  CAS  Google Scholar 

  • Rubes J, Kubickova S, Pagacova E et al (2008) Phylogenomic study of spiral-horned antelope by cross-species chromosome painting. Chromosome Res 16:935–947

    Article  PubMed  CAS  Google Scholar 

  • Ryder OA (1978) Chromosomal polymorphism in Equus hemionus. Cytogenet Cell Genet 21:177–183

    Article  PubMed  CAS  Google Scholar 

  • Ryder OA, Chemnick LG (1990) Chromosomal and molecular evolution in Asiatic wild asses. Genetica 83:67–72

    PubMed  CAS  Google Scholar 

  • Ryder OA, Epel NC, Benirschke K (1978) Chromosome-banding studies of Equidae. Cytogenet Cell Genet 20:323–350

    Article  Google Scholar 

  • Schermelleh L, Thalhammer S, Heckl W et al (1999) Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes. Biotechniques 27:362–267

    PubMed  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972

    Article  PubMed  CAS  Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe A et al (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4:257–263

    Article  PubMed  CAS  Google Scholar 

  • Trifonov VA, Stanyon R, Nesterenko AI et al (2008) Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 16:89–107

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J, Stanyon R (1997) Comparative painting of mammalian chromosomes. Curr Opin Genet Dev 7:784–791

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Fu B, O’Brien PCM, Robinson TJ, Ryder OA, Ferguson-Smith MA (2003) Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet Genome Res 102:235–243

    Article  PubMed  CAS  Google Scholar 

  • Yang FT, Fu BY, O’Brien PCM, Nie WH, Ryder OA, Ferguson-Smith MA (2004) Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res 12:65–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Grant Agency of the Czech Republic, project 523/09/1972 and by the Grant Agency of the Ministry of Agriculture of the Czech Republic, project MZE 0002716202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Musilova.

Additional information

Responsible Editor: Fengtang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musilova, P., Kubickova, S., Horin, P. et al. Karyotypic relationships in Asiatic asses (kulan and kiang) as defined using horse chromosome arm-specific and region-specific probes. Chromosome Res 17, 783–790 (2009). https://doi.org/10.1007/s10577-009-9069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9069-3

Keywords

Navigation