Skip to main content
Log in

Laminar hydrocarbon flame structure

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

From the very first experimental studies, based essentially on flame propagation velocity and flame emission measurements, successive improvements in analytical and numerical techniques have contributed to make the analysis of laminar flame structure a powerful tool for extending the knowledge on combustion chemistry, thermodynamics, and transport properties. This better knowledge is very beneficial to design efficient combustion devices with reduced pollutant emission. Overall net species production rates are derived from the experimental determination of the evolution of the gas stream velocity, temperature, and species concentrations in the direction normal to the flame front. For species involved in a limited number of reactions, rate constants can be calculated at the next step. The development, in the early 1980s, of numerical codes for simulating the structure of one-dimensional laminar premixed flames the flame structure data to be directly used for validating detailed reaction mechanisms. Species analyses are still performed with techniques based on local gas sampling by probes, despite flame perturbations, but flame structure analyses have been markedly enriched by the use of non-intrusive spectroscopic techniques. The former allow the analysis of a large variety of species, and they have proven to be very well adapted to the large number of intermediate species formed in rich flames or in flames fed by heavy fuel molecules. The molecular beam mass spectrometry technique has been recently improved by the use of new photoionization sources that allow identification of isomers and extend the knowledge on intermediate species involved in formation of benzene, polycyclic aromatic hydrocarbons, and soot in flames. Amongst various spectroscopic techniques applied to flame structure analyses, laser-induced fluorescence has been largely used to perform accurate quantitative measurements of intermediate radicals that play a key role in the prompt-NO mechanism. In this study, the contribution of flame structure studies to a better knowledge of formation mechanisms of benzene and NO x is briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Fristrom and A. A. Westenberg, Flame Structure, McGraw-Hill Book Company, New York (1964).

    Google Scholar 

  2. R. J. Kee, F. M. Rupley, and J. A. Miller, “CHEMKIN-II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics,” Sandia National Laboratories Report No. SAND 89-8009B (1989).

  3. R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, “PREMIX: A Fortran program for modeling laminar one-dimensional premixed flames,” Sandia National Laboratories Report No. SAND85-8240 (1985). http://www.ca.sandia.gov/chemkin/.

  4. J. Warnatz, Program for the Generation of a Link-file for the Calculation of a Stationary Laminar Premixed Flat 1-Dimensional Flame, University of Heidelberg, Germany (1983).

    Google Scholar 

  5. J. Warnatz, Program (Integration Part) for the Calculation of a Stationary Laminar Premixed Flat 1-Dimensional Flame, University of Heidelberg, Germany (1983).

    Google Scholar 

  6. J. C. Biordi, C. P. Lazzara, and J. F. Papp, “Molecular beam mass spectrometry applied to determine the kinetics of reactions in flames. I. Empirical characterization of flame perturbation by molecular beam sampling probes,” Combust. Flame, 23, 73–82 (1974).

    Article  Google Scholar 

  7. D. Stepowski, D. Puechberty, and M. J. Cottereau, “Use of laser-induced fluorescence of OH to study the perturbation of a flame by a probe,” in: Eighteenth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1981), pp. 1567–1573.

    Google Scholar 

  8. A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Effects of a sampling quartz nozzle on the flame structure of a fuel-rich low-pressure propene flame,” Combust. Flame, 121, 610–624 (2000).

    Article  Google Scholar 

  9. O. I. Smith, “Probe-induced distortions in the sampling of one-dimensional flames,” Combust. Flame, 40, 187–199 (1981).

    Article  Google Scholar 

  10. A. C. Yi and E. L. Knuth, “Probe-induced concentration distortions in molecular-beam mass-spectrometer sampling,” Combust. Flame, 63, 369–379 (1986).

    Article  Google Scholar 

  11. A. G. Tereschchenko, P. A. Skovorodko, O. P. Korobeinichev, D. A. Knyaskov, and A. G. Shmakov, “Gas dynamic and thermal perturbation of flame by sampling probe,” in: Proc. 5th Int. Seminar on Flame Structure, Novosibirsk, Russia (2005).

  12. C. Douté, J. L. Delfau, R. Akrich, and C. Vovelle, “Experimental study of the chemical structure of lowpressure premixed n-heptane-O2-Ar and iso-octane-O2-Ar flames,” Combust. Sci. Technol., 124, 249–276 (1997).

    Article  Google Scholar 

  13. K. H. Homann, M. Mochizuki, and H. Gg. Wagner, “Über den Reaktionsablauf in fetten Kohlenwasserstoff-Flammen, I,” Z. Phys. Chem., 37, 299–313 (1963).

    Google Scholar 

  14. A. D’Alessio, A. Di Lorenzo, F. Beretta, and C. Venitozzi, “Optical and chemical investigations on fuel-rich methane-oxygen premixed flames at atmospheric pressure,” in: Fourteenth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1973), pp. 941–953.

    Google Scholar 

  15. H. Bockhorn, F. Fetting, and H. W. Wenz, “Investigation of the formation of high molecular hydrocarbons and soot in premixed hydrocarbon-oxygen flames,” Ber Bunsenges. Phys. Chem., 87, 1067–1073 (1983).

    Google Scholar 

  16. M. Frenklach, D. W. Clary, W. C. Gardiner (Jr.), and S. E. Stein, “Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene,” in: Twentieth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1984), pp. 887–901.

    Google Scholar 

  17. J. A. Miller, R. E. Mitchell, M. D. Smooke, and R. J. Kee, “Toward a comprehensive chemical kinetic mechanism for the oxidation of acetylene: Comparison of model predictions with results from flame and shock tube experiments,” in: Nineteenth Symp. (Int.) on Combustion, Pittsburgh: The Combustion Inst., 181–196 (1982).

    Google Scholar 

  18. J. Warnatz, H. Bockhorn, A. Möser, and H. W. Wenz, “Experimental investigation of acetylene-oxygen flames from stoichiometric to sooting conditions,” ibid., pp. 197–209.

    Google Scholar 

  19. J. A. Cole, J. D. Bittner, J. P. Longwell, and J. B. Howard, “Formation of aromatic compounds in aliphatic flames,” Combust. Flame, 56, 51–70 (1984).

    Article  Google Scholar 

  20. M. Frenklach and J. Warnatz, “Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame,” Combust. Sci. Technol., 51, 265–283 (1987).

    Article  Google Scholar 

  21. S. J. Harris, A. M. Weiner, and R. Blint, “Formation of small aromatic molecules in a sooting ethylene flame,” Combust. Flame, 72, 91–109 (1988).

    Article  Google Scholar 

  22. P. R. Westmoreland and A. M. Dean, “Forming benzene in flames by chemically activated isomerization,” J. Phys. Chem., 93. 8171–8180 (1989).

    Article  Google Scholar 

  23. S. E. Stein, J. A. Walker, M. M. Suryan, and A. Fahr, “A new path to benzene in flames,” in: Twenty-Third Symp. (Int.) on Combustion., The Combustion Inst., Pittsburgh (1990), pp. 85–90.

    Google Scholar 

  24. L. D. Pfefferle, J. Boyle, and G. Bermudez, “Benzene formation during allene pyrolysis: possible implications for soot formation,” in: Preprints of Papers presented at 202nd National Meeting, Vol. 36, No. 4, New York (1991), pp. 1433–1439.

    Google Scholar 

  25. P. R. Westmoreland, “Experimental and theoretical analysis of oxidation and growth chemistry in a fuel-rich acetylene flame,” Ph.D. Thesis, Massachusetts Institute of Technology (1986).

  26. E. Bastin, J. L. Delfau, M. Reuillon, C. Vovelle, and J. Warnatz, “Experimental and computational investigation of the structure of a sooting C2H2-O2-Ar flame,” in: Twenty-Second Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1988), pp. 313–322.

    Google Scholar 

  27. J. A. Miller and C. F. Melius, “The formation of benzene in flames,” in: Preprints of Papers presented at 202nd National Meeting, Vol. 36, No. 4, New York, (1991), pp. 1440–1446.

    Google Scholar 

  28. J. A. Miller and C. F. Melius, “Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels,” Combust. Flame, 91, 21–39 (1992).

    Article  Google Scholar 

  29. U. Alkemade and K. H. Homann, “Formation of C6H6 isomers by recombination of propynyl in the system sodium vapour/propynylhalide,” Z. Phys. Chem. Neue Folge, 161, 19–34 (1989).

    Google Scholar 

  30. K. Seshadri, F. Mauss, N. Peters, and J. Warnatz, “A flamelet calculation of benzene formation in coflowing laminar diffusion flames,” in: Twenty-Third Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1990), pp. 559–566.

    Google Scholar 

  31. K. C. Smyth, J. Houston Miller, R. C. Dorfman, W. G. Mallard, and R. J. Santoro, “Soot inception in a methane/air diffusion flame as characterized by detailed species profiles,” Combust. Flame, 62, 157–181 (1985).

    Article  Google Scholar 

  32. C. Douté, J. L. Delfau, and C. Vovelle, “Reaction mechanism for aromatics formation in a low pressure, premixed acetylene-oxygen-argon flame,” Combust. Sci. Technol., 103, 153–173 (1994).

    Article  Google Scholar 

  33. C. H. Wu and R. D. Kern, “Shock-tube study of allene pyrolysis,” J. Phys. Chem., 91, 6291–6296 (1987).

    Article  Google Scholar 

  34. R. P. Lindstedt and G. Skevis, “Detailed kinetic modeling of premixed benzene flames,” Combust. Flame, 125, 73–137 (1997).

    Google Scholar 

  35. J. D. Bittner and J. B. Howard, “Composition profiles and reaction mechanisms in a near-sooting premixed benzene/oxygen/argon flame,” in: Eighteenth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1981), pp. 1105–1116.

    Google Scholar 

  36. K. M. Leung and R. P. Lindstedt, “Detailed kinetic modeling of C1—C3 alkane diffusion flames,” Combust. Flame, 102, 129–160 (1995).

    Article  Google Scholar 

  37. H. Tsuji and I. Yamaoka, “The structure of counterflow diffusion flames in the forward stagnation region of a porous cylinder,” in: Twelfth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1969), pp. 997–1005.

    Google Scholar 

  38. H. Tsuji and I. Yamaoka, “Structure analysis of counterflow diffusion flames in the forward stagnation region of a porous cylinder,” in Thirteenth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1971), pp. 723–731.

    Google Scholar 

  39. C. F. Melius, J. A. Miller, and E. M. Evleth, “Unimolecular reaction mechanism involving C3H4, C4H4 and C6H6 hydrocarbon species,” in Twenty-Fourth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1992), pp. 621–628.

    Google Scholar 

  40. R. P. Lindstedt and G. Skevis, “Benzene formation chemistry in premixed 1,3-butadiene flames”, in: Twenty-sixth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1996), pp. 703–709.

    Google Scholar 

  41. R. P. Lindstedt and G. Skevis, “Chemistry of acetylene flames,” Combust. Sci. Technol., 125, 73–137 (1997).

    Article  Google Scholar 

  42. J. Vandooren and P. J. Van Tiggelen, “Reaction mechanisms of combustion in low pressure acetylene-oxygen flames,” Sixteenth Symp. (Int.) on Combustion, Pittsburgh: The Combustion Inst., P. 1133 (1976).

    Google Scholar 

  43. J. A. Miller, J. V. Volponi, J. L. Durant, J. E. M. Goldsmith, G. A. Fisk, and R. J. Kee, “The structure and reaction mechanism of rich, non-sooting C2H2/O2/Ar flames,” in Twenty-Third Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1990), pp. 187–194.

    Google Scholar 

  44. R. P. Lindstedt and G. Skevis, “Molecular growth and oxygenated species formation in laminar ethylene flames,” Proc. Combust. Inst., 28, 1801–1807 (2000).

    Article  Google Scholar 

  45. A. Bhargava and P. R. Westmoreland, “MBMS analysis of a fuel lean ethylene flame,” Combust. Flame, 115, 456–467 (1998).

    Article  Google Scholar 

  46. A. Bhargava and P. R. Westmoreland, “Measured flame structure and kinetics in a fuel-rich ethylene flame,” Combust. Flame, 113, 333–347 (1998).

    Article  Google Scholar 

  47. N. M. Marinov, W. J. Pitz, C. K. Westbrook, M. J. Castaldi, and S. M. Senkan, “Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames,” Combust. Sci. Technol., 116–117, 211–287 (1996).

    Article  Google Scholar 

  48. M. J. Castaldi, N. M. Marinov, C. F. Melius, J. Huang, S. M. Senkan, W. J. Pitz, and C. K. Westbrook, “Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame,” in Twenty-Sixth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1996), pp. 693–702.

    Google Scholar 

  49. N. M. Marinov, M. J. Castaldi, C. F. Melius, and W. Tsang, “Aromatic and polycyclic aromatic hydrocarbon formation in a premixed propane flame,” Combust. Sci. Technol., 128, 295–342 (1997).

    Article  Google Scholar 

  50. N. M. Marinov, W. J. Pitz, C. K. Westbrook, A. M. Vincitore, M. J. Castaldi, S. M. Senkan, and C. F. Melius, “Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame,” Combust. Flame, 114, 192–213 (1998).

    Article  Google Scholar 

  51. H. Wang and M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames,” Combust. Flame, 110, 173–221 (1997).

    Article  Google Scholar 

  52. J. Appel, H. Bockhorn, and M. Frenklach, “Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons,” Combust. Flame, 121, 122–136 (2000).

    Article  Google Scholar 

  53. C. J. Pope and J. A. Miller, “Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels,” Proc. Combust. Inst., 28, 1519–1527 (2000).

    Google Scholar 

  54. B. Atakan, A. T. Hartlieb, J. Brand, and K. Kohse-Höinghaus, “An experimental investigation of premixed fuel-rich low-pressure propene/oxygen/argon flames by laser spectroscopy and molecular-beam mass spectroscopy,” in Twenty-Seventh Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1998), pp. 435–444.

    Google Scholar 

  55. H. Richter and J. B. Howard, “Formation and consumption of single ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames,” Phys. Chem. Chem. Phys., 4, 2038–2055 (2002).

    Article  Google Scholar 

  56. M. E. Law, P. R. Westmoreland, T. A. Cool, J. Wang, N. Hansen, C. A. Taatjes, and T. Kasper, “Benzene precursors and formation routes in a stoichiometric cyclohexane flame,” Proc. Combust. Inst., 31, 565–573 (2007).

    Article  Google Scholar 

  57. C. Douté, J. L. Delfau, R. Akrich, and C. Vovelle, “Experimental study of the chemical structure of lowpressure premixed n-heptane-O2-Ar and iso-octane-O2-Ar flames,” Combust. Sci. Technol., 124, 249–276 (1997).

    Article  Google Scholar 

  58. A. El Bakal, J. L. Delfau, and C. Vovelle, “Experimental study of 1 atmosphere, rich, premixed n-heptane and iso-octane flames,” Combust. Sci. Technol., 140, 69–91 (1998).

    Article  Google Scholar 

  59. A. Lamprecht, B. Atakan, and K. Kohse-Höinghaus, “Fuel-rich propene and acetylene flames: a comparison of their flame chemistries,” Combust. Flame, 122, 483–491 (2000).

    Article  Google Scholar 

  60. A. Lamprecht, B. Atakan, and K. Kohse-Höinghaus, “Fuel-rich flame chemistry in low-pressure cyclopentene flames,” Proc. Combust. Inst., 28, 1817–1824 (2000).

    Google Scholar 

  61. B. Atakan, A. Lamprecht, and K. Kohse-Höinghaus, “An experimental study of fuel-rich 1,3-pentadiene and acetylene/propene,” Combust. Flame, 133, 431–440 (2003).

    Article  Google Scholar 

  62. L. V. Moskaleva, A. M. Mebel, and M. C. Lin, “The CH3 + C5H5 reaction: a potential source of benzene at high temperature,” in Twenty-Sixth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1996), pp. 521–526.

    Google Scholar 

  63. C. F. Melius, M. E. Colvin, N. M. Marinov, W. J. Pitz, and S. M. Senkan, “Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety,” ibid., pp. 685–692.

    Google Scholar 

  64. K. Kohse-Höinghaus, B. Atakan, A. Lamprecht, G. Gonzales Alatorre, M. Kamphus, T. Kasper, and N. N. Liu, “Contributions to the investigation of reaction pathways in fuel-rich flames,” Phys. Chem. Chem. Phys., 4, 2056–2062 (2002).

    Article  Google Scholar 

  65. M. C. McEnally, L. D. Pfefferle, B. Atakan, and K. Kohse-Höinghaus, “Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap,” Prog. Energy Combust. Sci., 32, 247–294 (2006).

    Article  Google Scholar 

  66. B. A. V. Bennett, C. S. McEnally, L. D. Pfefferle, M. D. Smooke, and M. B. Colket, “Computational and experimental study of axisymmetric coflow partially premixed ethylene/air flames,” Combust. Flame, 127, 2004–2022 (2001).

    Article  Google Scholar 

  67. C. S. McEnally, L. D. Pfefferle, A. G. Robinson, and T. Zwier, “Aromatic hydrocarbon formation in nonpremixed flames doped with diacetylene, vinylacetylene and other hydrocarbons: evidence for pathways involving C4 species,” Combust. Flame, 123, 344–357 (2000).

    Article  Google Scholar 

  68. L. Dupont, A. El Bakali, J. F. Pauwels, I. Da Costa, P. Meunier, and H. Richter, “Investigation of stoichiometric methane/air/benzene (1.5%) and methane/air low pressure flames,” Combust. Flame, 135, 171–183 (2003).

    Article  Google Scholar 

  69. C. Renard, P. J. Van Tiggelen, and J. Vandooren, “Effect of dimethoxymethane addition on the experimental structure of a rich ethylene/oxygen/argon flame,” Proc. Combust. Inst., 29, 1277–1284 (2003).

    Article  Google Scholar 

  70. F. Defoeux, V. Dias, C. Renard, P. J. Van Tiggelen, and J. Vandooren, “Experimental investigation of the structure of a sooting benzene/oxygen/argon flame burning at low pressure,” Proc. Combust. Inst., 30, 1407–1415 (2005).

    Article  Google Scholar 

  71. N. Hansen, S. J. Klippenstein, J. A. Miller, et al. “Identification and chemistry of C4H3 and C4H5 isomers in fuel-rich flames,” J. Phys. Chem. A, 110, 3670–3678 (2006).

    Article  Google Scholar 

  72. N. Hansen, S. J. Klippenstein, C. A. Taatjes, J. A. Miller, J. Wang, T. A. Cool, M. E. Law, P. R. Westmoreland, T. Kasper, and K. Kohse-Höinghaus, “Identification of C5Hx isomers in fuel-rich flames by ionization by photoionization mass spectrometry and electronic structure calculations,” J. Phys. Chem. A, 110, 4376–4388 (2006).

    Article  Google Scholar 

  73. B. Yang, Y. Li, L. Wei, C. Huang, J. Wang, Z. Tian, R. Yang, L. Sheng, Y. Zhang, and F. Qi, “An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization,” Proc. Combust. Inst., 31, 555–563 (2007).

    Article  Google Scholar 

  74. J. L. Delfau and C. Vovelle, “Analyse par Spectrométrie de Masse de Flammes C2H2/O2 Produisant des Suies,” J. Chimie Phys., 82, 747–754 (1985).

    Article  Google Scholar 

  75. R. Ancia, “Etude de la formation des précurseurs des suies dans les flammes riches d’acétyl`ene et d’éthane,” Th`ese, Université Catholique de Louvain, Belgium (1998).

    Google Scholar 

  76. J. W. Bozzelli and A. M. Dean, “O + NNH: A possible new route for NOx formation in flames,” Int. J. Chem. Kinet., 27, 1097–1109 (1995).

    Article  Google Scholar 

  77. J. E. Harrington, G. P. Smith, P. A. Berg, A. R. Noble, J. B. Jeffries, and D. R. Crosley, “Evidence for a new NO production mechanism in flames,” in Twenty-Sixth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1996), pp. 2133–2138.

    Google Scholar 

  78. A. N. Hayhurst and E. M. Hutchinson, “Evidence for a new way of producing NO via NNH in fuel-rich flames at atmospheric pressure,” Combust. Flame, 114, 274–279 (1998).

    Article  Google Scholar 

  79. A. A. Konnov, “On the relative importance of different routes forming NO in hydrogen flames,” Combust. Flame, 134, 421–424 (2003).

    Article  Google Scholar 

  80. J. A. Miller and C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Prog. Energy Combust. Sci., 4, 287–338 (1989).

    Article  Google Scholar 

  81. C. P. Fenimore, “Formation of nitric oxide in premixed hydrocarbon flames,” in Thirteenth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1971), pp. 373–380.

    Google Scholar 

  82. J. Blauwens, B. Smets, and J. Peeters, “Mechanism of “prompt” NO formation in hydrocarbon flames,” in Sixteenth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1977), pp. 1055–1064.

    Google Scholar 

  83. T. Miyauchi, Y. Mori, and A. Imamura, “A study of nitric oxide formation in fuel-rich hydrocarbon flames: role of cyanide species, H, OH and O,” ibid., pp. 1073–1082.

    Google Scholar 

  84. Y. Matsui and T. Nomaguchi, “Spectroscopic study of prompt nitrogen oxide formation mechanism in hydrocarbon-air flames,” Combust. Flame, 32, 205–214 (1978).

    Article  Google Scholar 

  85. R. Manaa and D. R. Yarkony, “On the mechanism of the reaction CH(X2Π)+N2(X1Σ +g ) → HCN(X1Σ+)+N(4S). I. A theoretical treatment of the electronic structure aspects of the intersystem crossing,” J. Chem. Phys, 95, 1808–1816 (1991).

    Article  ADS  Google Scholar 

  86. R. Manaa and D. R. Yarkony, “The mechanism of the reaction CH(X2Π)+N2(X1Σ +g ) → HCN(X1Σ+)+N(4S). II. The intermediate complex region,” Chem. Phys. Lett., 188, 352–358 (1992).

    Article  ADS  Google Scholar 

  87. S. P. Walch, “Characterization of the minimum energy path for CH(X2Π) + N2(X1Σ +g ) → HCN(X1Σ+) + N(4S),” Chem. Phys. Lett., 208, 214–218 (1993).

    Article  ADS  Google Scholar 

  88. A. S. Rodgers and G. P. Smith, “Pressure and temperature dependence of the reactions of CH with N2,” Chem. Phys. Lett., 253, 313–321 (1996).

    Article  ADS  Google Scholar 

  89. J. A. Miller and S. P. Walch, “Prompt NO: Theoretical prediction of the high temperature rate coefficient for CH + N2 → HCN + N,” Int. J. Chem. Kinet., 29, 253–259 (1997).

    Article  Google Scholar 

  90. M. R. Berman and M. C. Lin, “Kinetics and mechanism of the CH + N2 reaction. Temperature and pressure dependence studies and transition-state-theory analysis,” J. Phys. Chem., 87, 3933–3942 (1983).

    Article  Google Scholar 

  91. A. J. Dean, R. K. Hanson, and C. T. Bowman, “High temperature shock tube study of reactions of CH and C-atoms with N2,” in: Twenty-Third Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1990), pp. 259–265.

    Google Scholar 

  92. D. Lindackers, M. Burmeister, and P. Roth, “Perturbation studies of high temperature C and CH reactions with N2 and NO,” ibid., pp. 251–257.

    Google Scholar 

  93. K. H. Becker, B. Engelhardt, H. Geiger, R. Kurtenbach, G. Schrey, and P. Wiesen, “Temperature dependence of the CH + N2 reaction at low total pressure,” Chem. Phys. Lett., 195, 322–328 (1992).

    Article  ADS  Google Scholar 

  94. J. Luque, G. P. Smith, and D. R. Crosley, “Quantitative CH determinations in low-pressure flames,” in: Twenty-Sixth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1996), pp. 959–966.

    Google Scholar 

  95. P.A. Berg, G. P. Smith, J. B. Jeffries, and D.R. Crosley, “Nitric oxide formation and reburn in low-pressure methane flames,” in: Twenty-Seventh Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1998), pp. 1377–1384.

    Google Scholar 

  96. C. T. Bowman, R. K. Hanson, D. F. Davidson, et al. http://www.me.berkeley.edu/grimech/.

  97. L. Gasnot, P. Desgroux, J. F. Pauwels, and L. R. Sochet, “Detailed analysis of low pressure premixed flames of CH4+O2+N2: A study of prompt-NO,” Combust. Flame, 117, 291–306 (1999).

    Article  Google Scholar 

  98. V. Sick, F. Hildenbrand, and P. Lindstedt, “Quantitative laser-based measurements and detailed chemical kinetic modelling of nitric oxide concentrations in methane-air counterflow diffusion flames,” in: Twenty-Seventh Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1998), pp. 1401–1409.

    Google Scholar 

  99. G. P. Smith, D. M. Golden, M. Frenklach, et al., GRIMech 3.0 (1999); www.me.berkeley.edu/gri_mech/version30/text30.html.

  100. I. Derzy, V. A. Lozovsky, and S. Cheskis, “Absolute concentration in flames measured by cavity ring-down spectroscopy,” Chem. Phys. Lett., 306, 319–324 (1999).

    Article  ADS  Google Scholar 

  101. J.W. Thoman (Jr.) and A. McIlroy, “Absolute CH radical concentration in rich low-pressure methane-oxygen-argon flames by cavity ring-down spectroscopy of the A2Δ-X2Π transition,” J. Phys. Chem. A, 104, 4953–4961 (2000).

    Article  Google Scholar 

  102. L. V. Moskaleva and M. C. Lin, “The spin-conserved reaction CH + N2 → H + NCN: A major pathway to prompt NO studied by quantum/statistical theory calculations and kinetic modelling of rate constant,” Proc. of the Combust. Inst., 28, 2393–2401 (2000).

    Google Scholar 

  103. G. P. Smith, “Evidence of NCN as a flame intermediate for prompt NO,” Chem. Phys. Lett., 367, 541–548 (2003).

    Article  ADS  Google Scholar 

  104. J. A. Sutton, B. A. Williams, and J. W. Fleming, “Laser-induced fluorescence measurements of NCN in low-pressure CH4/O2/N2 flames and its role in prompt NO formation,” Combust. Flame, 153, 465–478 (2008).

    Article  Google Scholar 

  105. N. Lamoureux, X. Mercier, C. Western, J. F. Pauwels, and P. Desgroux, “NCN quantitative measurement in a laminar low pressure flame,” Proc. Combust. Inst., 32 (2008).

  106. A. El Bakali, L. Pillier, P. Desgroux, et al., “NO prediction in natural gas flames using GDF-Kin®3.0 mechanism: NCN and HCN contribution to prompt-NO formation,” Fuel, 85, 896–909 (2006).

    Article  Google Scholar 

  107. L. Pillier, A. El Bakali, X. Mercier, A. Rida, J. F. Pauwels, and P. Desgroux, “Influence of C2 and C3 compounds of natural gas on NO formation: An experimental study based on LIF/CRDS coupling,” Proc. Combust. Inst., 30, 1183–1191 (2005).

    Article  Google Scholar 

  108. P. A. Berg, D. A. Hill, A. R. Noble, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Absolute CH concentration measurement in low-pressure methane flames: comparisons with model results,” Combust. Flame, 121, 223–235 (2000).

    Article  Google Scholar 

  109. P. Dagaut, F. Lecomte, S. Chevailler, and M. Cathonnet, “Experimental and detailed kinetic modelling of nitric oxide reduction by a natural gas blend in simulated reburning conditions,” Combust. Sci. Technol., 139, 329–363 (1998).

    Article  Google Scholar 

  110. A. El Bakali, P. Dagaut, L. Pillier, P. Desgroux, and J. F. Pauwels, “Experimental and modeling study of the oxidation of natural gas in a premixed flames, shock tube, and jet-stirred reactor,” Combust. Flame, 137, 109–128 (2004).

    Article  Google Scholar 

  111. J. Tomeczek and B. Gradon, “The role of N2O and NNH in the formation of NO via HCN in hydrocarbon flames,” Combust. Flame, 133, 311–322 (2003).

    Article  Google Scholar 

  112. V. Vasudevan, R. K. Hanson, C. T. Bowman, D. M. Golden, and D. F. Davidson, “Shock tube study of the reaction of CH with N2: Overall rate and branching ratio,” J. Phys. Chem. A, 111, No. 46, 11818–11830 (2007).

    Article  Google Scholar 

  113. B. Harding, S. J. Klippenstein, and J. A. Miller, “Kinetics of CH+N2 revisited with multireference methods,” J. Phys. Chem. A, 112, No. 3, 522–532 (2008).

    Article  Google Scholar 

  114. J. A. Sutton and J. W. Fleming, “Towards accurate kinetic modelling of prompt NO formation in hydrocarbon flames via the NCN pathway,” Combust. Flame, 154, 630–636 (2008).

    Article  Google Scholar 

  115. J. F. Pauwels, J. V. Volponi, and J. A. Miller, “The oxidation of allene in a low-pressure H2/O2/Ar/C3H4 flame,” Combust. Sci. Technol., 110–111, 249–276 (1995).

    Article  Google Scholar 

  116. L. J. Medhurst, N. L. Garland, and H. H. Nelson, “CH + N2 = HCN2: kinetic study of the addition channel from 300 to 1100 K,” J. Phys. Chem., 97, 12275–12281 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vovelle.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 4, pp. 22–42, July–August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vovelle, C., Delfau, J.L. & Pillier, L. Laminar hydrocarbon flame structure. Combust Explos Shock Waves 45, 365–382 (2009). https://doi.org/10.1007/s10573-009-0047-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0047-z

Key words

Navigation