Skip to main content
Log in

Comparative analysis of physical mechanisms of detonation initiation in HMX and in a low-sensitive explosive (TATB)

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Based on the concept of hot spots, the basic physical factors determining the macrokinetics of chemical reactions in heterogeneous crystalline explosives are estimated. The macrokinetics in plasticized TATB is shown to be basically determined by the velocity of combustion propagation from microscopic reaction spots (hot spots), whereas the macrokinetics in plasticized HMX is determined by the density of hot spots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Jackson, L. Green, R. Barlett, et al., “Laws of initiation and propagation of detonation in the TATB explosive,” in: Detonation and Explosives (collected scientific papers) [Russian translation], Mir, Moscow (1981), pp. 323–342.

    Google Scholar 

  2. V. F. Lobanov, “Modeling of detonation waves in heterogeneous condensed explosives,” Fiz. Goreniya Vzryva, 16, No. 6, 113–116 (1980).

    Google Scholar 

  3. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media [in Russian], Yanus, Moscow (1996).

    Google Scholar 

  4. Ch. Mader, Numerical Modelling of Detonations, University of California Press, Berkeley (1983).

    Google Scholar 

  5. C. M. Tarver, S. K. Chidester, and A. L. Nichols, “Critical conditions for impact and shock induced hot spots in solid explosives,” J. Phys. Chem., 100, 5794–5799 (1996).

    Article  Google Scholar 

  6. J. Sharma, J. W. Forbes, C. S. Coffey, and T. P. Liddard, “The physical and chemical nature of sensitization centers left from hot spots caused in triaminotrinitrobenzene by shock or impact,” J. Phys. Chem., 91, 5139–5144 (1987).

    Article  Google Scholar 

  7. D. S. Phillips, R. B. Schwartz, C. B. Skidmore, et al., “Some observation of the structure of TATB,” in: Shock Compression of Condensed Matter — 1999, AIP (2000), pp. 707–710.

  8. P. M. Howe and D. J. Benson, “Progress in the development of shock initiation model,” in: Shock Compression of Condensed Matter — 2003, AIP (2004), pp. 343–346.

  9. R. Menikoff, “Pore collapse and hot spots in HMX,” ibid., pp. 393–396.

  10. K. F. Grebenkin, M. V. Taranik, S. K. Tsarenkova, and A. S. Shnitko, “Physical model of low-velocity detonation in plasticized HMX,” Combust., Expl., Shock Waves, 44, No. 1, 92–100 (2008).

    Article  Google Scholar 

  11. Ch. Kittel, Introduction into Solid State Physics, Univ. of California, Berkeley (2005).

    Google Scholar 

  12. M. A. Vorob’eva, K. F. Grebenkin, and Yu. A. Kulik, “Numerical modeling of the kinetics of phonon-vibronic relaxation in the combustion wave propagating over a shock-compressed explosive,” Khim. Fiz., 26, No. 3, 30–33 (2007).

    Google Scholar 

  13. C. M. Tarver and A. L. Nichols, “Hot spot growth in a thermal-chemical-mechanical reactive flow model for shock initiation of solid explosives,” in: Proc. 11th Symp. (Int.) on Detonation, Snowmass (1998), pp. 599–605.

  14. J. Starkenberg, “Modeling detonation propagation and failure using explosive initiation models in a conventional hydrocodes,” in: Proc. 12th Symp. (Int.) on Detonation, San Diego, California (2002), pp. 1001–1007.

  15. Yu. A. Aminov, A. V. Vershinin, N. S. Es’kov, et al., “Shock-wave sensitivity of a TATB-based plasticized explosive,” Combust., Expl., Shock Waves, 31, No. 1, 100–105 (1995).

    Article  Google Scholar 

  16. M. F. Foltz, “Behavior of explosives under pressure in a diamond cell,” in: Proc. 13th Symp. (Int.) on Detonation, Norfolk (2006); ONR 351-07-01, Office of Naval Research (2007), pp. 997–1006.

  17. K. F. Grebenkin, A. L. Zherebtsov, and M. V. Taranik, “Electronic thermal conductivity during combustionwave propagation from hot spots in detonating TATB,” Combust., Expl., Shock Waves, 41, No. 5, 573–576 (2005).

    Article  Google Scholar 

  18. V. G. Morozov, I. I. Karpenko, Yu. V. Yanilkin, and O. N. Chernysheva, “Calculation of the growth rate of hot spots in detonation with allowance for the turbulent mechanism of energy transfer,” in: IX Khariton Scientific Readings, Proc. Int. Conf., Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov (2007), pp. 205–211.

    Google Scholar 

  19. L. P. Orlenko (ed.), Physics of Explosion [in Russian], Vol. 1, Fizmatlit, Moscow (2002).

    Google Scholar 

  20. F. F. Grebenkin, A. L. Zherebtsov, V. V. Popova, and M. V. Taranik, “Estimates of the velocity of combustion-wave propagation from “hot spots“ under shock initiation of TATB,” in: V Khariton Scientific Readings, Proc. Int. Conf., Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov (2003), pp. 189–194.

    Google Scholar 

  21. Yu. A. Aminov, N. S. Es’kov, and Yu. R. Nikitenko, “Modeling of double shock initiation of TATB-based explosives,” in: Proc. 12th Symp. (Int.) on Detonation, San Diego (2002), pp. 910–913.

  22. T. M. Wiley, T. Van Buuren, J. R. I. Lee, et al., “Changes in pore size distribution upon thermal cycling of TATB-based explosives measured by ultra-small angle X-ray scattering,” Propellants, Explosives, Pyrotechnics, 31, No. 6, 466–471 (2006).

    Article  Google Scholar 

  23. K. F. Grebenkin and A. L. Zherebtsov, “Numerical modeling of TATB shock-wave heating,” Combust., Expl., Shock Waves, 36, No. 2, 246–251 (2000).

    Article  Google Scholar 

  24. P. H. Howe and D. C. Benson, “Exploitation of some micro-mechanical concepts to develop an engineering model of shock initiation,” in: Proc. 12th Symp. (Int.) on Detonation, San Diego (2002).

  25. V. G. Morozov, I. I. Karpenko, S. E. Kuratov, et al., “Theoretical justification of the phenomenological model of shock sensitivity of a TATB-based heterogeneous explosive with allowance for single and double shock-wave loading, including situations with intermediate unloading,” Khim. Fiz., 14, Nos. 2–3, 32–39 (1995).

    Google Scholar 

  26. P. M. Krishenik and K. G. Shkadinskii, “Hightemperature thermal front with nonlinear thermal conductivity,” Dokl. Ross. Akad. Nauk, 392, No. 6, 761–766 (2003).

    MathSciNet  Google Scholar 

  27. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Plenum, New York (1985).

    Google Scholar 

  28. K. F. Grebenkin, “Semiconductor model of detonation: State-of-the-art,” Khim. Fiz., 24, No. 11, 18–25 (2005).

    Google Scholar 

  29. E. I. Zababakhin, Some Problems of Gas-Dynamics of Explosion [in Russian], Snezhinsk (1978).

  30. C. M. Tarver, J. W. Kury, and R. D. Breithaupt, “Detonation waves in triaminotrinitrobenzene,” J. Appl. Phys., 82, No. 8, 3771–3782 (1997).

    Article  ADS  Google Scholar 

  31. K. F. Grebenkin, M. V. Taranik, and A. L. Zherebtsov, “Computer modeling of scale effects at heterogeneous HE detonation,” in: Proc. Thirteenth Symp. (Int.) on Detonation (Norfolk, 2006), ONR 351-07-01, Office of Naval Research (2007), pp. 496–505.

  32. K. F. Grebenkin, A. L. Zherebtsov, V. V. Popova, and M. V. Taranik, “P, V, E, T equation of state for TATBbased explosives,” in: Shock Compression of Condensed Matter — 2003, AIP (2004), pp. 141–144.

  33. K. F. Grebenkin, “Semiconductor model of detonation,” in: Shock Compression of Condensed Matter — 2005, AIP (2006), pp. 982–985.

  34. K. F. Grebenkin and A. L. Kutepov, “Estimate of the forbidden band width of the triaminotrinitrobenzene molecular crystal by the method of the density functional,” Fiz. Tekh. Poluprovod., 34, No. 10, 1212–1213 (2000).

    Google Scholar 

  35. C. J. Wu, L. H. Yang, L. E. Fried, J. Quenneville, and T. J. Martinez, “On the role of pressure induced metallization in energetic materials: electronic structure of solid TATB under uniaxial compression,” Phys. Rev. B, 67, 235101–235107 (2003).

    Google Scholar 

  36. B. F. Henson, L. Smilowitz, B. W. Asay, et al., “Evidence for thermal equilibrium in the detonation of HMX,” in: Proc. 12th Symp. (Int.) on Detonation, San Diego, California (2002), pp. 987–992.

  37. M. M. Kuklja, B. P. Aduev, E. D. Aluker, et al., “Role of electron excitations in explosive decomposition of solids,” J. Appl. Phys., 89, No. 7, 4156–4166 (2000).

    Article  Google Scholar 

  38. F. F. Grebenkin, A. L. Zherebtsov, M. V. Taranik, S. K. Tsarenkova, and A. S. Shnitko, “United model of detonation of a TATB-based explosive composition,” in: IX Khariton Scientific Readings, Abstracts Int. Conf., Inst. Exp. Phys., Russian Federal Nuclear Center, Sarov (2007), pp. 89–90.

    Google Scholar 

  39. H. Ostmark, A. Langlet, H. Bergman, et al., “FOX-7 — A new explosive with low sensitivity and high performance,” in: Proc. 11th Int. Detonation Symp., Snowmass, USA (1998), pp. 807–812.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Grebenkin.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 45, No. 1, pp. 89‐99, January–February, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grebenkin, K.F. Comparative analysis of physical mechanisms of detonation initiation in HMX and in a low-sensitive explosive (TATB). Combust Explos Shock Waves 45, 78–87 (2009). https://doi.org/10.1007/s10573-009-0011-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-009-0011-y

Key words

Navigation