Skip to main content
Log in

Abstract

Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors (GPCRs) that are evolutionarily conserved in vertebrates. The first discovered TAAR1 is mainly expressed in the brain, and is able to detect low abundant trace amines. TAAR1 is also activated by several synthetic compounds and psychostimulant drugs like amphetamine. Activation of TAAR1 by specific agonists can regulate the classical monoaminergic systems in the brain. Further studies have revealed that other TAAR family members are highly expressed in the olfactory system which are termed olfactory TAARs. In vertebrates, olfactory TAARs can specifically recognize volatile or water-soluble amines. Some of these TAAR agonists are produced by decarboxylation of amino acids. In addition, some TAAR agonists are ethological odors that mediate animal innate behaviors. In this study, we provide a comprehensive review of TAAR agonists, including their structures, biosynthesis pathways, and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Achat-Mendes C, Lynch LJ, Sullivan KA, Vallender EJ, Miller GM (2012) Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1. Pharmacol Biochem Behav 101:201–207

    CAS  PubMed  Google Scholar 

  • Anwar MA, Ford WR, Broadley KJ, Herbert AA (2012) Vasoconstrictor and vasodilator responses to tryptamine of rat-isolated perfused mesentery: comparison with tyramine and beta-phenylethylamine. Br J Pharmacol 165:2191–2202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Assadi-Porter FM, Reiland H, Sabatini M, Lorenzini L, Carnicelli V, Rogowski M, Selen Alpergin ES, Tonelli M, Ghelardoni S, Saba A et al (2018) Metabolic reprogramming by 3-Iodothyronamine (T1AM): a new perspective to reverse obesity through co-regulation of sirtuin 4 and 6 expression. Int J Mol Sci 19:1535

    PubMed Central  Google Scholar 

  • Azzouzi N, Barloy-Hubler F, Galibert F (2015) Identification and characterization of cichlid TAAR genes and comparison with other teleost TAAR repertoires. BMC Genomics 16:335

    PubMed  PubMed Central  Google Scholar 

  • Babusyte A, Kotthoff M, Fiedler J, Krautwurst D (2013) Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2. J Leukoc Biol 93:387–394

    CAS  PubMed  Google Scholar 

  • Bai J, Baker SM, Goodrich-Schneider RM, Montazeri N, Sarnoski PJ (2019) Aroma profile characterization of mahi-mahi and tuna for determining spoilage using purge and trap gas chromatography-mass spectrometry. J Food Sci 84:481–489

    CAS  PubMed  Google Scholar 

  • Barger G, Walpole GS (1909) Isolation of the pressor principles of putrid meat. J Physiol 38:343–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry MD (2004) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 90:257–271

    CAS  PubMed  Google Scholar 

  • Berry MD, Gainetdinov RR, Hoener MC, Shahid M (2017) Pharmacology of human trace amine-associated receptors: therapeutic opportunities and challenges. Pharmacol Ther 180:161–180

    CAS  PubMed  Google Scholar 

  • Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S et al (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA 98:8966–8971

    CAS  PubMed  Google Scholar 

  • Boulton AA (1974) Letter: amines and theories in psychiatry. Lancet 2:52–53

    CAS  PubMed  Google Scholar 

  • Bradaia A, Trube G, Stalder H, Norcross RD, Ozmen L, Wettstein JG, Pinard A, Buchy D, Gassmann M, Hoener MC et al (2009) The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system. Proc Natl Acad Sci USA 106:20081–20086

    CAS  PubMed  Google Scholar 

  • Brahmachary RL, Dutta J (1979) Phenylethylamine as a biochemical marker of tiger. Zeitschrift fur Naturforschung Section C, Biosciences 34:632–633

    CAS  PubMed  Google Scholar 

  • Broadley KJ, Fehler M, Ford WR, Kidd EJ (2013) Functional evaluation of the receptors mediating vasoconstriction of rat aorta by trace amines and amphetamines. Eur J Pharmacol 715:370–380

    CAS  PubMed  Google Scholar 

  • Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL et al (2001) Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60:1181–1188

    CAS  PubMed  Google Scholar 

  • Cashman JR (2002) Human flavin-containing monooxygenase (form 3): polymorphisms and variations in chemical metabolism. Pharmacogenomics 3:325–339

    CAS  PubMed  Google Scholar 

  • Chhibber-Goel J, Gaur A, Singhal V, Parakh N, Bhargava B, Sharma A (2016) The complex metabolism of trimethylamine in humans: endogenous and exogenous sources. Expert Rev Mol Med 18:e8

    PubMed  Google Scholar 

  • Chiellini G, Erba P, Carnicelli V, Manfredi C, Frascarelli S, Ghelardoni S, Mariani G, Zucchi R (2012) Distribution of exogenous [125I]-3-iodothyronamine in mouse in vivo: relationship with trace amine-associated receptors. J Endocrinol 213:223–230

    CAS  PubMed  Google Scholar 

  • Churcher AM, Hubbard PC, Marques JP, Canario AV, Huertas M (2015) Deep sequencing of the olfactory epithelium reveals specific chemosensory receptors are expressed at sexual maturity in the European eel Anguilla anguilla. Mol Ecol 24:822–834

    CAS  PubMed  Google Scholar 

  • Cichero E, Tonelli M (2017a) New insights into the structure of the trace amine-associated receptor 2: homology modelling studies exploring the binding mode of 3-iodothyronamine. Chem Biol Drug Des 89:790–796

    CAS  PubMed  Google Scholar 

  • Cichero E, Tonelli M (2017b) Targeting species-specific trace amine-associated receptor 1 ligands: to date perspective of the rational drug design process. Future Med Chem 9:1507–1527

    CAS  PubMed  Google Scholar 

  • Clemow DB, Walker DJ (2014) The potential for misuse and abuse of medications in ADHD: a review. Postgrad Med 126:64–81

    PubMed  Google Scholar 

  • Cotter R, Pei Y, Mus L, Harmeier A, Gainetdinov RR, Hoener MC, Canales JJ (2015) The trace amine-associated receptor 1 modulates methamphetamine’s neurochemical and behavioral effects. Front Neurosci 9:39

    PubMed  PubMed Central  Google Scholar 

  • Dewan A, Pacifico R, Zhan R, Rinberg D, Bozza T (2013) Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497:486–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dewan A, Cichy A, Zhang J, Miguel K, Feinstein P, Rinberg D, Bozza T (2018) Single olfactory receptors set odor detection thresholds. Nat Commun 9:2887

    PubMed  PubMed Central  Google Scholar 

  • Dial EJ, Cooper LC, Lichtenberger LM (1991) Amino acid- and amine-induced gastrin release from isolated rat endocrine granules. Am J Physiol 260:G175–181

    CAS  PubMed  Google Scholar 

  • Dinter J, Khajavi N, Mühlhaus J, Wienchol CL, Cöster M, Hermsdorf T, Stäubert C, Köhrle J, Schöneberg T, Kleinau G et al (2015a) The multitarget ligand 3-iodothyronamine modulates β-adrenergic receptor 2 signaling. Eur Thyroid J 4:21–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dinter J, Muhlhaus J, Jacobi SF, Wienchol CL, Coster M, Meister J, Hoefig CS, Muller A, Kohrle J, Gruters A et al (2015b) 3-iodothyronamine differentially modulates alpha-2A-adrenergic receptor-mediated signaling. J Mol Endocrinol 54:205–216

    CAS  PubMed  Google Scholar 

  • Dinter J, Muhlhaus J, Wienchol CL, Yi CX, Nurnberg D, Morin S, Gruters A, Kohrle J, Schoneberg T, Tschop M et al (2015c) Inverse agonistic action of 3-iodothyronamine at the human trace amine-associated receptor 5. PLoS ONE 10:e0117774

    PubMed  PubMed Central  Google Scholar 

  • Dolphin CT, Janmohamed A, Smith RL, Shephard EA, Phillips IR (1997) Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nat Genet 17:491–494

    CAS  PubMed  Google Scholar 

  • Eyun SI (2019) Accelerated pseudogenization of trace amine-associated receptor genes in primates. Genes Brain Behav 18:e12543

    PubMed  PubMed Central  Google Scholar 

  • Eyun SI, Moriyama H, Hoffmann FG, Moriyama EN (2016) Molecular evolution and functional divergence of trace amine-associated receptors. PLoS ONE 11:e0151023

    PubMed  PubMed Central  Google Scholar 

  • Fatsini E, Bautista R, Manchado M, Duncan NJ (2016) Transcriptomic profiles of the upper olfactory rosette in cultured and wild Senegalese sole (Solea senegalensis) males. Comp Biochem Physiol D 20:125–135

    CAS  Google Scholar 

  • Fennema D, Phillips IR, Shephard EA (2016) Trimethylamine and trimethylamine N-Oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos 44:1839–1850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez de Palencia P, Fernandez M, Mohedano ML, Ladero V, Quevedo C, Alvarez MA, Lopez P (2011) Role of tyramine synthesis by food-borne Enterococcus durans in adaptation to the gastrointestinal tract environment. Appl Environ Microbiol 77:699–702

    CAS  PubMed  Google Scholar 

  • Ferragud A, Howell AD, Moore CF, Ta TL, Hoener MC, Sabino V, Cottone P (2017) The trace amine-associated receptor 1 agonist RO5256390 blocks compulsive, binge-like eating in rats. Neuropsychopharmacology 42:1458–1470

    CAS  PubMed  Google Scholar 

  • Ferrero DM, Lemon JK, Fluegge D, Pashkovski SL, Korzan WJ, Datta SR, Spehr M, Fendt M, Liberles SD (2011) Detection and avoidance of a carnivore odor by prey. Proc Natl Acad Sci USA 108:11235–11240

    CAS  PubMed  Google Scholar 

  • Ferrero DM, Wacker D, Roque MA, Baldwin MW, Stevens RC, Liberles SD (2012) Agonists for 13 trace amine-associated receptors provide insight into the molecular basis of odor selectivity. ACS Chem Biol 7:1184–1189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gainetdinov RR, Hoener MC, Berry MD (2018) Trace amines and their receptors. Pharmacol Rev 70:549–620

    CAS  PubMed  Google Scholar 

  • Galley G, Stalder H, Goergler A, Hoener MC, Norcross RD (2012) Optimisation of imidazole compounds as selective TAAR1 agonists: discovery of RO5073012. Bioorg Med Chem Lett 22:5244–5248

    CAS  PubMed  Google Scholar 

  • Gao S, Liu S, Yao J, Li N, Yuan Z, Zhou T, Li Q, Liu Z (2017) Genomic organization and evolution of olfactory receptors and trace amine-associated receptors in channel catfish, Ictalurus punctatus. Biochim Biophys Acta 1861:644–651

    CAS  Google Scholar 

  • Garg RP, Ma Y, Hoyt JC, Parry RJ (2002) Molecular characterization and analysis of the biosynthetic gene cluster for the azoxy antibiotic valanimycin. Mol Microbiol 46:505–517

    CAS  PubMed  Google Scholar 

  • Garg RP, Qian XL, Alemany LB, Moran S, Parry RJ (2008) Investigations of valanimycin biosynthesis: elucidation of the role of seryl-tRNA. Proc Natl Acad Sci USA 105:6543–6547

    CAS  PubMed  Google Scholar 

  • Grus WE, Zhang J (2008) Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol Biol Evol 25:1593–1601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, Chaboz S, Dernick G, Wettstein JG, Iglesias A, Rolink A et al (2015) Trace amine-associated receptor 1 activation silences GSK3beta signaling of TAAR1 and D2R heteromers. Eur Neuropsychopharmacol 25:2049–2061

    CAS  PubMed  Google Scholar 

  • Harmeier A, Meyer CA, Staempfli A, Casagrande F, Petrinovic MM, Zhang YP, Kunnecke B, Iglesias A, Honer OP, Hoener MC (2018) How female mice attract males: a urinary volatile amine activates a trace amine-associated receptor that induces male sexual interest. Front Pharmacol 9:924

    PubMed  PubMed Central  Google Scholar 

  • Hashiguchi Y, Nishida M (2007) Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol Biol Evol 24:2099–2107

    CAS  PubMed  Google Scholar 

  • Haughton BG, King HK (1961) Induced formation of leucine decarboxylase in Proteus vulgaris. Biochem J 80:268–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heal DJ, Smith SL, Gosden J, Nutt DJ (2013) Amphetamine, past and present–a pharmacological and clinical perspective. J Psychopharmacol 27:479–496

    PubMed  PubMed Central  Google Scholar 

  • Hoefig CS, Köhrle J, Brabant G, Dixit K, Yap B, Strasburger CJ, Wu Z (2011) Evidence for extrathyroidal formation of 3-iodothyronamine in humans as provided by a novel monoclonal antibody-based chemiluminescent serum immunoassay. J Clin Endocrinol Metab 96:1864–1872

    CAS  PubMed  Google Scholar 

  • Horowitz LF, Saraiva LR, Kuang D, Yoon KH, Buck LB (2014) Olfactory receptor patterning in a higher primate. J Neurosci 34:12241–12252

    PubMed  PubMed Central  Google Scholar 

  • Hussain A, Saraiva LR, Korsching SI (2009) Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proc Natl Acad Sci USA 106:4313–4318

    CAS  PubMed  Google Scholar 

  • Hussain A, Saraiva LR, Ferrero DM, Ahuja G, Krishna VS, Liberles SD, Korsching SI (2013) High-affinity olfactory receptor for the death-associated odor cadaverine. Proc Natl Acad Sci USA 110:19579–19584

    CAS  PubMed  Google Scholar 

  • Ito J, Ito M, Nambu H, Fujikawa T, Tanaka K, Iwaasa H, Tokita S (2009) Anatomical and histological profiling of orphan G-protein-coupled receptor expression in gastrointestinal tract of C57BL/6 J mice. Cell Tissue Res 338:257–269

    CAS  PubMed  Google Scholar 

  • Izquierdo C, Gomez-Tamayo JC, Nebel JC, Pardo L, Gonzalez A (2018) Identifying human diamine sensors for death related putrescine and cadaverine molecules. PLoS Comput Biol 14:e1005945

    PubMed  PubMed Central  Google Scholar 

  • Janeiro MH, Ramirez MJ, Milagro FI, Martinez JA, Solas M (2018) Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. https://doi.org/10.3390/nu10101398

    Article  PubMed  PubMed Central  Google Scholar 

  • Jing L, Zhang Y, Li JX (2014) Effects of the trace amine associated receptor 1 agonist RO5263397 on abuse-related behavioral indices of methamphetamine in rats. Int J Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyu060

    Article  PubMed  Google Scholar 

  • Johnson MA, Tsai L, Roy DS, Valenzuela DH, Mosley C, Magklara A, Lomvardas S, Liberles SD, Barnea G (2012) Neurons expressing trace amine-associated receptors project to discrete glomeruli and constitute an olfactory subsystem. Proc Natl Acad Sci USA 109:13410–13415

    CAS  PubMed  Google Scholar 

  • Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200

    CAS  PubMed  Google Scholar 

  • Kleinau G, Pratzka J, Nurnberg D, Gruters A, Fuhrer-Sakel D, Krude H, Kohrle J, Schoneberg T, Biebermann H (2011) Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists. PLoS ONE 6:e27073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohrle J, Biebermann H (2019) 3-Iodothyronamine-A thyroid hormone metabolite with distinct target profiles and mode of action. Endocr Rev 40:602–630

    PubMed  Google Scholar 

  • Kubo H, Shibato J, Saito T, Ogawa T, Rakwal R, Shioda S (2015) Unraveling the rat intestine, spleen and liver genome-wide transcriptome after the oral administration of lavender oil by a two-color dye-swap DNA microarray approach. PLoS ONE 10:e0129951

    PubMed  PubMed Central  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    CAS  PubMed  Google Scholar 

  • Laurino A, Matucci R, Vistoli G, Raimondi L (2016) 3-iodothyronamine (T1AM), a novel antagonist of muscarinic receptors. Eur J Pharmacol 793:35–42

    CAS  PubMed  Google Scholar 

  • Lefèvre PL, Palin MF, Murphy BD (2011) Polyamines on the reproductive landscape. Endocr Rev 32:694–712

    PubMed  Google Scholar 

  • Lewin AH, Navarro HA, Gilmour BP (2009) Amiodarone and its putative metabolites fail to activate wild type hTAAR1. Bioorg Med Chem Lett 19:5913–5914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q (2018) Deorphanization of olfactory trace amine-associated receptors. Methods Mol Biol 1820:21–31

    CAS  PubMed  Google Scholar 

  • Li Q, Liberles SD (2016) Chapter 4—odor sensing by trace amine-associated receptors. In: Zufall F, Munger SD (eds) Chemosensory transduction. Academic Press, Cambridge, pp 67–80

    Google Scholar 

  • Li Q, Korzan WJ, Ferrero DM, Chang RB, Roy DS, Buchi M, Lemon JK, Kaur AW, Stowers L, Fendt M et al (2013) Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr Biol 23:11–20

    PubMed  Google Scholar 

  • Li Q, Tachie-Baffour Y, Liu Z, Baldwin MW, Kruse AC, Liberles SD (2015) Non-classical amine recognition evolved in a large clade of olfactory receptors. Elife 4:e10441

    PubMed  PubMed Central  Google Scholar 

  • Libants S, Carr K, Wu H, Teeter JH, Chung-Davidson YW, Zhang Z, Wilkerson C, Li W (2009) The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage. BMC Evol Biol 9:180

    PubMed  PubMed Central  Google Scholar 

  • Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650

    CAS  PubMed  Google Scholar 

  • Lindemann L, Hoener MC (2005) A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci 26:274–281

    CAS  PubMed  Google Scholar 

  • Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC (2005) Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 85:372–385

    CAS  PubMed  Google Scholar 

  • Lindemann L, Meyer CA, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, Bettler B, Wettstein JG, Borroni E, Moreau JL et al (2008) Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther 324:948–956

    CAS  PubMed  Google Scholar 

  • Liu JF, Seaman R Jr, Siemian JN, Bhimani R, Johnson B, Zhang Y, Zhu Q, Hoener MC, Park J, Dietz DM et al (2018) Role of trace amine-associated receptor 1 in nicotine’s behavioral and neurochemical effects. Neuropsychopharmacology 43:2435–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luqman A, Nega M, Nguyen MT, Ebner P, Götz F (2018) SadA-Expressing staphylococci in the human gut show increased cell adherence and internalization. Cell Rep 22:535–545

    CAS  PubMed  Google Scholar 

  • Malki A, Fiedler J, Fricke K, Ballweg I, Pfaffl MW, Krautwurst D (2015) Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J Leukoc Biol 97:533–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcobal A, De las Rivas B, Landete JM, Tabera L, Munoz R (2012) Tyramine and phenylethylamine biosynthesis by food bacteria. Crit Rev Food Sci Nutr 52:448–467

    CAS  PubMed  Google Scholar 

  • Marra NJ, Stanhope MJ, Jue NK, Wang M, Sun Q, Pavinski Bitar P, Richards VP, Komissarov A, Rayko M, Kliver S et al (2019) White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability. Proc Natl Acad Sci USA 116:4446

    CAS  PubMed  Google Scholar 

  • Michael ES, Covic L, Kuliopulos A (2019) Trace amine-associated receptor 1 (TAAR1) promotes anti-diabetic signaling in insulin-secreting cells. J Biol Chem 294:4401–4411

    CAS  PubMed  Google Scholar 

  • Miller GM (2011) The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem 116:164–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427:3389–3406

    CAS  PubMed  Google Scholar 

  • Muhlhaus J, Dinter J, Nurnberg D, Rehders M, Depke M, Golchert J, Homuth G, Yi CX, Morin S, Kohrle J et al (2014) Analysis of human TAAR8 and murine Taar8b mediated signaling pathways and expression profile. Int J Mol Sci 15:20638–20655

    PubMed  PubMed Central  Google Scholar 

  • Nelson DA, Tolbert MD, Singh SJ, Bost KL (2007) Expression of neuronal trace amine-associated receptor (Taar) mRNAs in leukocytes. J Neuroimmunol 192:21–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura K, Utsumi K, Yuhara M, Fujitani Y, Iritani A (1989) Identification of puberty-accelerating pheromones in male mouse urine. J Exp Zool 251:300–305

    CAS  PubMed  Google Scholar 

  • Pacifico R, Dewan A, Cawley D, Guo C, Bozza T (2012) An olfactory subsystem that mediates high-sensitivity detection of volatile amines. Cell Rep 2:76–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panas HN, Lynch LJ, Vallender EJ, Xie Z, Chen GL, Lynn SK, Scanlan TS, Miller GM (2010) Normal thermoregulatory responses to 3-iodothyronamine, trace amines and amphetamine-like psychostimulants in trace amine associated receptor 1 knockout mice. J Neurosci Res 88:1962–1969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pei Y, Lee J, Leo D, Gainetdinov RR, Hoener MC, Canales JJ (2014) Activation of the trace amine-associated receptor 1 prevents relapse to cocaine seeking. Neuropsychopharmacology 39:2299–2308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pei Y, Mortas P, Hoener MC, Canales JJ (2015) Selective activation of the trace amine-associated receptor 1 decreases cocaine’s reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds. Prog Neuropsychopharmacol Biol Psychiatry 63:70–75

    CAS  PubMed  Google Scholar 

  • Pei Y, Asif-Malik A, Hoener M, Canales JJ (2017) A partial trace amine-associated receptor 1 agonist exhibits properties consistent with a methamphetamine substitution treatment. Addict Biol 22:1246–1256

    CAS  PubMed  Google Scholar 

  • Price MA, Vandenbergh JG (1992) Analysis of puberty-accelerating pheromones. J Exp Zool 264:42–45

    CAS  PubMed  Google Scholar 

  • Raab S, Wang H, Uhles S, Cole N, Alvarez-Sanchez R, Kunnecke B, Ullmer C, Matile H, Bedoucha M, Norcross RD et al (2016) Incretin-like effects of small molecule trace amine-associated receptor 1 agonists. Mol Metab 5:47–56

    CAS  PubMed  Google Scholar 

  • Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA et al (2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci USA 108:8485–8490

    CAS  PubMed  Google Scholar 

  • Revel FG, Moreau JL, Gainetdinov RR, Ferragud A, Velazquez-Sanchez C, Sotnikova TD, Morairty SR, Harmeier A, Groebke Zbinden K, Norcross RD et al (2012) Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics. Biol Psychiatry 72:934–942

    CAS  PubMed  Google Scholar 

  • Revel FG, Moreau JL, Pouzet B, Mory R, Bradaia A, Buchy D, Metzler V, Chaboz S, Groebke Zbinden K, Galley G et al (2013) A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight. Mol Psychiatry 18:543–556

    CAS  PubMed  Google Scholar 

  • Rhee HJ, Kim EJ, Lee JK (2007) Physiological polyamines: simple primordial stress molecules. J Cell Mol Med 11:685–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rickli A, Hoener MC, Liechti ME (2019) Pharmacological profiles of compounds in preworkout supplements (“boosters”). Eur J Pharmacol 859:172515

    PubMed  Google Scholar 

  • Rolen SH, Sorensen PW, Mattson D, Caprio J (2003) Polyamines as olfactory stimuli in the goldfish Carassius auratus. J Exp Biol 206:1683–1696

    CAS  PubMed  Google Scholar 

  • Rutigliano G, Accorroni A, Zucchi R (2017) The case for TAAR1 as a modulator of central nervous system function. Front Pharmacol 8:987

    PubMed  Google Scholar 

  • Saba A, Chiellini G, Frascarelli S, Marchini M, Ghelardoni S, Raffaelli A, Tonacchera M, Vitti P, Scanlan TS, Zucchi R (2010) Tissue distribution and cardiac metabolism of 3-iodothyronamine. Endocrinology 151:5063–5073

    CAS  PubMed  Google Scholar 

  • Santos PS, Courtiol A, Heidel AJ, Honer OP, Heckmann I, Nagy M, Mayer F, Platzer M, Voigt CC, Sommer S (2016) MHC-dependent mate choice is linked to a trace-amine-associated receptor gene in a mammal. Sci Rep 6:38490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos PSC, Mezger M, Kolar M, Michler FU, Sommer S (2018) The best smellers make the best choosers: mate choice is affected by female chemosensory receptor gene diversity in a mammal. Proc Biol Sci 285:20182426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saraiva LR, Kondoh K, Ye X, Yoon KH, Hernandez M, Buck LB (2016) Combinatorial effects of odorants on mouse behavior. Proc Natl Acad Sci USA 113:E3300–3306

    CAS  PubMed  Google Scholar 

  • Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S et al (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10:638–642

    CAS  PubMed  Google Scholar 

  • Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR (2018) Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets 22:513–526

    CAS  PubMed  Google Scholar 

  • Scott AM, Zhang Z, Jia L, Li K, Zhang Q, Dexheimer T, Ellsworth E, Ren J, Chung-Davidson YW, Zu Y et al (2019) Spermine in semen of male sea lamprey acts as a sex pheromone. PLoS Biol 17:e3000332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serizawa S, Miyamichi K, Sakano H (2004) One neuron-one receptor rule in the mouse olfactory system. Trends Genet 20:648–653

    CAS  PubMed  Google Scholar 

  • Shao X, Lakhina V, Dang P, Cheng RP, Marcaccio CL, Raper JA (2017) Olfactory sensory axons target specific protoglomeruli in the olfactory bulb of zebrafish. Neural Dev 12:18

    PubMed  PubMed Central  Google Scholar 

  • Sharma K, Ahuja G, Hussain A, Balfanz S, Baumann A, Korsching SI (2016) Elimination of a ligand gating site generates a supersensitive olfactory receptor. Sci Rep 6:28359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma K, Balfanz S, Baumann A, Korsching S (2018) Full rescue of an inactive olfactory receptor mutant by elimination of an allosteric ligand-gating site. Sci Rep 8:9631

    PubMed  PubMed Central  Google Scholar 

  • Sharma K, Syed AS, Ferrando S, Mazan S, Korsching SI (2019) The chemosensory receptor repertoire of a true shark is dominated by a single olfactory receptor family. Genome Biol Evol 11:398–405

    PubMed  PubMed Central  Google Scholar 

  • Sim GY, Yang SM, Kim BG, Ahn JH (2015) Bacterial synthesis of N-hydroxycinnamoyl phenethylamines and tyramines. Microb Cell Fact 14:162

    PubMed  PubMed Central  Google Scholar 

  • Simmler LD, Buchy D, Chaboz S, Hoener MC, Liechti ME (2016) In vitro characterization of psychoactive substances at rat, mouse, and human trace amine-associated receptor 1. J Pharmacol Exp Ther 357:134–144

    CAS  PubMed  Google Scholar 

  • Sotnikova TD, Beaulieu JM, Espinoza S, Masri B, Zhang XD, Salahpour A, Barak LS, Caron MG, Gainetdinov RR (2010) The dopamine metabolite 3-methoxytyramine is a neuromodulator. Plos ONE 5:e13452

    PubMed  PubMed Central  Google Scholar 

  • Stavrou S, Gratz M, Tremmel E, Kuhn C, Hofmann S, Heidegger H, Peryanova M, Hermelink K, Hutter S, Toth B et al (2018) TAAR1 induces a disturbed GSK3beta phosphorylation in recurrent miscarriages through the ODC. Endocr Connect 7:372–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L, Li Q, Xie XS (2015) Olfactory sensory neurons transiently express multiple olfactory receptors during development. Mol Syst Biol 11:844

    PubMed  PubMed Central  Google Scholar 

  • Tessarolo JA, Tabesh MJ, Nesbitt M, Davidson WS (2014) Genomic organization and evolution of the trace amine-associated receptor (TAAR) repertoire in Atlantic salmon (Salmo salar). G3 (Bethesda) 4:1135–1141

    CAS  Google Scholar 

  • Tsilioni I, Pipis H, Freitag MSC, Izquierdo MDC, Freitag K, Theoharides TC (2019) Effects of an extract of salmon milt on symptoms and serum TNF and substance P in patients with fibromyalgia syndrome. Clin Ther 41:1564–1574.e1562

    PubMed  Google Scholar 

  • Underhill SM, Hullihen PD, Chen J, Fenollar-Ferrer C, Rizzo MA, Ingram SL, Amara SG (2019) Amphetamines signal through intracellular TAAR1 receptors coupled to Galpha13 and GalphaS in discrete subcellular domains. Mol Psychiatry. https://doi.org/10.1038/s41380-019-0469-2

    Article  PubMed  Google Scholar 

  • Wallrabenstein I, Kuklan J, Weber L, Zborala S, Werner M, Altmuller J, Becker C, Schmidt A, Hatt H, Hummel T et al (2013) Human trace amine-associated receptor TAAR5 can be activated by trimethylamine. PLoS ONE 8:e54950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallrabenstein I, Singer M, Panten J, Hatt H, Gisselmann G (2015) Timberol(R) inhibits TAAR5-mediated responses to trimethylamine and influences the olfactory threshold in humans. PLoS ONE 10:e0144704

    PubMed  PubMed Central  Google Scholar 

  • Xue Z, Siemian JN, Johnson BN, Zhang Y, Li JX (2018) Methamphetamine-induced impulsivity during chronic methamphetamine treatment in rats: effects of the TAAR 1 agonist RO5263397. Neuropharmacology 129:36–46

    CAS  PubMed  Google Scholar 

  • Zhang J, Pacifico R, Cawley D, Feinstein P, Bozza T (2013) Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci 33:3228–3239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zucchi R, Chiellini G, Scanlan TS, Grandy DK (2006) Trace amine-associated receptors and their ligands. Br J Pharmacol 149:967–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zucchi R, Accorroni A, Chiellini G (2014) Update on 3-iodothyronamine and its neurological and metabolic actions. Front Physiol 5:402

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (to Q.L., Award Number 31771154, 31970933), Shanghai Brain-Intelligence Project from the Science and Technology Commission of Shanghai Municipality (18JC1420302), Shanghai Pujiang Program (to Q.L., Award Number 17PJ1405400), Program for Young Scholars of Special Appointment at Shanghai Institutions of Higher Learning (to Q.L., Award Number QD2018017), Innovative research team of high-level local universities in Shanghai, Fundamental Research Funds for the Central Universities (Shanghai Jiao Tong University, to Q.L., Award Number 17X100040037), the Project of Invigorating Health Care through Science, Technology and Education (ZDXKB2016015).

Author information

Authors and Affiliations

Authors

Contributions

ZX and QL conceived and wrote the paper.

Corresponding author

Correspondence to Qian Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Li, Q. TAAR Agonists. Cell Mol Neurobiol 40, 257–272 (2020). https://doi.org/10.1007/s10571-019-00774-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-019-00774-5

Keywords

Navigation