Skip to main content

Advertisement

Log in

Thymoquinone Prevents β-Amyloid Neurotoxicity in Primary Cultured Cerebellar Granule Neurons

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Thymoquinone (TQ), a bioactive constituent of Nigella sativa Linn (N. sativa) has demonstrated several neuropharmacological attributes. In the present study, the neuroprotective properties of TQ were investigated by studying its anti-apoptotic potential to diminish β-amyloid peptide 1–40 sequence (Aβ1–40)-induced neuronal cell death in primary cultured cerebellar granule neurons (CGNs). The effects of TQ against Aβ1–40-induced neurotoxicity, morphological damages, DNA condensation, the generation of reactive oxygen species, and caspase-3, -8, and -9 activation were investigated. Pretreatment of CGNs with TQ (0.1 and 1 μM) and subsequent exposure to 10 μM Aβ1–40 protected the CGNs against the neurotoxic effects of the latter. In addition, the CGNs were better preserved with intact cell bodies, extensive neurite networks, a loss of condensed chromatin and less free radical generation than those exposed to Aβ1–40 alone. TQ pretreatment inhibited Aβ1–40-induced apoptosis of CGNs via both extrinsic and intrinsic caspase pathways. Thus, the findings of this study suggest that TQ may prevent neurotoxicity and Aβ1–40-induced apoptosis. TQ is, therefore, worth studying further for its potential to reduce the risks of developing Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Aβ:

Beta-amyloid peptide

AD:

Alzheimer’s disease

TQ:

Thymoquinone

CGNs:

Primary cultured cerebellar granule neurons

PC12:

Pheochromocytoma

MTS:

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

LDH:

Lactate dehydrogenase

DMSO:

Dimethyl sulfoxide

PBS:

Phosphate buffered saline

DMPO:

5,5-Dimethyl-1-pyrroline-1-oxide

References

  • Akhtar M, Maikiyo AM, Khanam R, Mujeeb M, Aqil M, Najmi AK (2012) Ameliorating effects of two extracts of Nigella sativa in middle cerebral artery occluded rat. J Pharm Bioallied Sci 4:70–75

    Article  PubMed  Google Scholar 

  • Akshomoff N, Courchesne E (1992) A new role for the cerebellum in cognitive operations. Behav Neurosci 106:731–738

    Article  Google Scholar 

  • Appollonio IM, Grafman J, Schwartz V, Massaquoi S, Hallett M (1993) Memory in patients with cerebellar degeneration. Neurology 43:1536–1544

    Article  PubMed  CAS  Google Scholar 

  • Babazadeh B, Sadeghnia HR, Kapurchal ES, Parsaee H, Nasri S, Zahra TN (2012) Protective effect of Nigella sativa and thymoquinone on serum/glucose deprivation-induced DNA damage in PC12 cells. Avicenna J Phytomed 2:125–132

    Google Scholar 

  • Bloedel JR, Bracha V (1997) Duality of cerebellar motor and cognitive functions. Int Rev Neurobiol 41:613–634

    Article  PubMed  CAS  Google Scholar 

  • Boyd-Kimball D, Sultana R, Mohammad HA, Butterfield DA (2005) γ-Glutamylcysteine ethyl ester-induced up-regulation of glutathione protects neurons against Aβ(1-42)-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. J Neurosci Res 79:700–706

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Bohl J, Lang W (1989) Alzheimer’s disease: amyloid plaques in the cerebellum. J Neurol Sci 93:277–287

    Article  PubMed  CAS  Google Scholar 

  • Bracke-Tolkmitt R, Linden A, Canavan AGM, Rockstroh B, Scholz E, Wessel K, Diener HC (1989) The cerebellum contributes to mental skills. Behav Neurosci 103:442–446

    Article  Google Scholar 

  • Bush AI, Huang X, Fairlie DP (1999) The possible origin of free radicals from amyloid β-peptides in Alzheimer’s disease. Neurobiol Aging 20:335–337

    Article  Google Scholar 

  • Colom LV, Castaneda MT, Aleman D, Touhami A (2013) Memantine protects cholinergic and glutamatergic septal neurons from Aβ1–40-induced toxicity. Neurosci Lett 541:54–57

    Article  PubMed  CAS  Google Scholar 

  • Cummings JL, Cole G (2002) Alzheimer disease. JAMA 287:2335–2338

    Article  PubMed  CAS  Google Scholar 

  • D’Amelio M, Cavallucci V, Middei S et al (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14:69–76

    Article  PubMed  Google Scholar 

  • Di Matteo V, Pierucci M, Di Giovanni G, Esposito E (2007) Prevention and therapy of neurodegenerative disorders: role of nutritional antioxidants. In: Qureshi GA, Parvez SH (eds) Oxidative stress and neurodegenerative disorders. Elsevier, Amsterdam, pp 621–661

    Chapter  Google Scholar 

  • El-Agamy DS, Nader MA (2012) Attenuation of oxidative stress-induced vascular endothelial dysfunction by thymoquinone. Exp Biol Med 237:1032–1038

    Article  CAS  Google Scholar 

  • Fatokun AA, Stone TW, Smith RA (2007) Cell death in rat cerebellar granule neurons induced by hydrogen peroxide in vitro: mechanisms and protection. Brain Res 1132:93–202

    Article  Google Scholar 

  • Ferrari CKB (2007) Diet, herbs, and nutritional protection against oxidative stress in neurological diseases. In: Qureshi GA, Parvez SH (eds) Oxidative stress and neurodegenerative disorders. Elsevier, Amsterdam, pp 525–541

    Chapter  Google Scholar 

  • Forloni G, Chiesa R, Smiroldo S, Verga L (1993) Apoptosis-mediated neurotoxicity neurotoxicity induced by chronic application of beta amyloid fragment 25–35. Neuroreport 4:523–526

    Article  PubMed  CAS  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  PubMed  CAS  Google Scholar 

  • Hirohata M, Ono K, Jun-ichi T, Takahashi R, Ikeda T, Morinaga A, Yamada M (2012) Anti-amyloidogenic effects of soybean isoflavones in vitro: fluorescence spectroscopy demonstrating direct binding to Aβ monomers, oligomers and fibrils. Biochim Biophys Acta 1822:1316–1324

    Article  PubMed  CAS  Google Scholar 

  • Ikonomovic S, Kharlamov E, Manev H, Ikonomovic MD, Grayson DR (1997) GABA and NMDA in the prevention of apoptotic-like cell death in vitro. Neurochem Int 31:83–290

    Article  Google Scholar 

  • Irie Y, Keung WM (2003) Rhizoma acori graminei and its active principles protect PC-12 cells from the toxic effect of amyloid-[beta] peptide. Brain Res 963:282–289

    Article  PubMed  CAS  Google Scholar 

  • Ismail N, Ismail M, Latiff LA, Mazlan M, Mariod AA (2008) Black cumin seed (Nigella sativa Linn.) oil and its fractions protect against beta-amyloid peptide-induced toxicity in primary cerebellar granule neurons. J Food Lipids 15:519–533

    Article  CAS  Google Scholar 

  • Ivins K, Thornton P, Rohn T, Cotman C (1999) Neuronal apoptosis induced by β-amyloid is mediated by caspase-8. Neurobiol Dis 6:440–449

    Article  PubMed  CAS  Google Scholar 

  • Ivry R, Baldo J (1992) Is the cerebellum involved in learning and cognition? Curr Opin Neurobiol 2:212–216

    Article  PubMed  CAS  Google Scholar 

  • Joachim CL, Morris JH, Selkoe DJ (1989) Diffuse senile plaques occur commonly in the cerebellum in Alzheimer’s disease. Am J Pathol 135:309–319

    PubMed  CAS  Google Scholar 

  • Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK (2005) Cognitive impairments in cerebellar infarcts. Neurosci Behav Physiol 35:773–779

    Article  PubMed  CAS  Google Scholar 

  • Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7:153–163

    Article  PubMed  CAS  Google Scholar 

  • Khan A, Vaibhav K, Javed H, Khan MM, Tabassum R, Ahmed ME et al (2012) Attenuation of Aβ-induced neurotoxicity by thymoquinone via inhibition of mitochondrial dysfunction and oxidative stress. Mol Cell Biochem 369:55–65

    Article  PubMed  CAS  Google Scholar 

  • Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111:785–793

    PubMed  CAS  Google Scholar 

  • Li G, Ma R, Huang C et al (2008) Protective effect of erythropoietin on β-amyloid-induced PC12 cell death through antioxidant mechanisms. Neurosci Lett 442:143–147

    Article  PubMed  CAS  Google Scholar 

  • Li W, Chu Y, Zhang L, Yin L, Li L (2012) Ginsenoside Rg1 prevents SK-N-SH neuroblastoma cell apoptosis induced by supernatant from Aβ1–40-stimulated THP-1 monocytes. Brain Res Bull 88:501–506

    Article  PubMed  CAS  Google Scholar 

  • Mann DM, Pickering-Brown SM, Takeuchi A, Iwatsubo T (2001) Amyloid angiopathy and variability in amyloid beta deposition is determined by mutation position in presenilin-1-linked Alzheimer’s disease. Am J Pathol 158:2165–2175

    Article  PubMed  CAS  Google Scholar 

  • Miguel-Hidalgo JJ, Paul IA, Wanzo V, Banerje PK (2012) Memantine prevents cognitive impairment and reduces Bcl-2 and caspases 8 immunoreactivity in rats injected with amyloid β1–40. Eur J Pharmacol 692:38–45

    Article  PubMed  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2005) Preformed β-amyloid fibrils are destabilized by coenzyme Q10 in vitro. Biochem Biophys Res Comm 330:111–116

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Hasegawa K, Naiki H, Yamada M (2006) Anti-Parkinsonian agents have anti-amyloidogenic activity for Alzheimer’s β-amyloid fibrils in vitro. Neurochem Int 48:275–285

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Li L, Takamura Y, Yoshiike Y, Zhu L, Han F, Mao X, Ikeda T, Jun-ichi T, Nishijo H, Takashima A, Teplow DB, Zagorski MG, Yamada M (2012) Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. J Biol Chem 287:14631–14643

    Article  PubMed  CAS  Google Scholar 

  • Parkins EJ (1997) Cerebellum and cerebrum in adaptive control and cognition: a review. Biol Cybern 77:79–87

    Article  PubMed  CAS  Google Scholar 

  • Petersen SE, Fiez JA (1993) The processing of single words studied with positron emission tomography. Annu Rev Neurosci 16:509–530

    Article  PubMed  CAS  Google Scholar 

  • Pieri M, Amadoro G, Carunchio I, Ciotti MT, Quaresima S, Florenzano F, Calissano P, Possenti R, Zona C, Severini C (2010) SP protects cerebellar granule cells against b-amyloid-induced apoptosis by down-regulation and reduced activity of Kv4 potassium channels. Neuropharmacology 58:268–276

    Article  PubMed  CAS  Google Scholar 

  • Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW (1995) Structure–activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J Neurochem 64:253–265

    Article  PubMed  CAS  Google Scholar 

  • Rohn TT, Head E, Nesse WH, Cotman CW, Cribbs DH (2001) Activation of caspase-8 in the Alzheimer’s disease brain. Neurobiol Dis 8:1006–1016

    Article  PubMed  CAS  Google Scholar 

  • Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E, Vandenabeele P (2011) Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis 43:68–78

    Article  PubMed  CAS  Google Scholar 

  • Scorziello A, Meucci O, Florio T, Fattore M, Forloni G, Salmona M, Schettini G (1996) Beta 25–35 alters calcium homeostasis and induces neurotoxicity in cerebellar granule cells. J Neurochem 66:1995–2003

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis 3:75–80

    PubMed  CAS  Google Scholar 

  • Sheikh BY, Mohamadin AM (2012) Thymoquinone a potential therapy for cerebral oxidative stress. Asian J Nat Appl Sci 1:76–92

    Google Scholar 

  • Shrivastava RM, Agrawal RC, Parveen ZJ (2011) A review on therapeutic applications of Nigella sativa. J Chem Chem Sci 1:241–248

    Google Scholar 

  • Tabner BJ, Turnbull S, El-Agnaf OMA, Allsop D (2002) Formation of hydrogen peroxide and hydroxyl radicals from Aβ and α-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Radic Biol Med 32:1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Tacconi S, Perri R, Balestrieri E et al (2004) Increased caspase activation in peripheral blood mononuclear cells of patients with Alzheimer’s disease. Exp Neurol 190:254–262

    Article  PubMed  CAS  Google Scholar 

  • Terry AV Jr, Callahan PM, Hall B, Webster SJ (2011) Alzheimer’s disease and age-related memory decline (preclinical). Pharmacol Biochem Behav 99:190–210

    Article  PubMed  CAS  Google Scholar 

  • Ullah I, Ullah N, Naseer MI, Lee HY, Kim MO (2012) Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons. BMC Neurosci 13:11

    Article  PubMed  CAS  Google Scholar 

  • Wai MS, Liang Y, Shi C, Cho EY, Kung HF, Yew DT (2009) Co-localization of hyperphosphorylated tau and caspase in the brainstem of Alzheimer’s disease patients. Biogerontology 10:457–469

    Article  PubMed  CAS  Google Scholar 

  • Wallesch CW, Horn A (1990) Long-term effects of cerebellar pathology on cognitive functions. Brain Cogn 14:19–25

    Article  PubMed  CAS  Google Scholar 

  • Wan B, Hu X, Nie J, Zhou M, Yang B, Li Y, Wen W, Lu C (2013) Effects of triptolide on degeneration of dendritic spines induced by Aβ1–40 injection in rat hippocampus. Neurol Sci. doi:10.1007/s10072-013-1463-0

    PubMed  Google Scholar 

  • Wegiel J, Wisniewski HM, Dziewiatkowski J, Badmajew E, Tarnawski M, Reisberg B, Mlodzik B, Miller DC (1999) Cerebellar atrophy in Alzheimer’s disease-clinicopathological correlations. Brain Res 818:41–50

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Leeds PR, Qian Y, Wei W, Chen R, Chuang D (2000) β-Amyloid peptide-induced death of PC 12 cells and cerebellar granule cell neurons is inhibited by long-term lithium treatment. Eur J Pharmacol 392:117–123

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Nakazato Y (1989) Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia demonstrated by β protein immunostain. Acta Neuropathol 77:314–319

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16:921–932

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA, Dawes LR, Fisher S, Vilia-Komaroff L, Oster-Granite ML, Neve RL (1989) Neurotoxicity of a fragment of amyloid precursor associated with Alzheimer’s disease. Science 245:417–420

    Article  PubMed  CAS  Google Scholar 

  • Yu MS, Leung SKY, Lai SW et al (2005) Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against β-amyloid peptide neurotoxicity. Exp Gerontol 40:716–727

    Article  PubMed  Google Scholar 

  • Zhang J, Zhen YF, Pu-Bu-Ci-Ren, Song LG, Kong WN, Shao TM, Li X, Chai XQ (2013) Salidroside attenuates beta amyloid-induced cognitive deficits via modulating oxidative stress and inflammatory mediators in rat hippocampus. Behav Brain Res 244:70–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Government of Malaysia and Universiti Putra Malaysia for providing financial support for this work via Research University Grant.

Conflict of interests

None of the authors have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maznah Ismail.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismail, N., Ismail, M., Mazlan, M. et al. Thymoquinone Prevents β-Amyloid Neurotoxicity in Primary Cultured Cerebellar Granule Neurons. Cell Mol Neurobiol 33, 1159–1169 (2013). https://doi.org/10.1007/s10571-013-9982-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9982-z

Keywords

Navigation