Skip to main content

Advertisement

Log in

Differential Effects of AGS3 Expression on D2L Dopamine Receptor-Mediated Adenylyl Cyclase Signaling

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Activator of G protein signaling 3 (AGS3) binds Gαi subunits in the GDP-bound state, implicating AGS3 as an important regulator of Gαi-linked receptor (e.g., D2 dopamine and μ-opioid) signaling. We examined the ability of AGS3 to modulate recombinant adenylyl cyclase (AC) type 1 and 2 signaling in HEK293 cells following both acute and persistent activation of the D2L dopamine receptor (D2LDR). AGS3 expression modestly enhanced the potency of acute quinpirole-induced D2LDR modulation of AC1 or AC2 activity. AGS3 also promoted desensitization of D2LDR-mediated inhibition of AC1, whereas desensitization of D2LDR-mediated AC2 activation was significantly attenuated. Additionally, AGS3 reduced D2LDR-mediated sensitization of AC1 and AC2. These data suggest that AGS3 is involved in altering G protein signaling in a complex fashion that is effector-specific and dependent on the duration of receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An N, Blumer JB, Bernard ML, Lanier SM (2008) The PDZ and band 4.1 containing protein Frmpd1 regulates the subcellular location of activator of G-protein signaling 3 and its interaction with G-proteins. J Biol Chem 283:24718–24728

    Article  PubMed  CAS  Google Scholar 

  • Bernard ML, Peterson YK, Chung P, Jourdan J, Lanier SM (2001) Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins. J Biol Chem 276:1585–1593

    Article  PubMed  CAS  Google Scholar 

  • Blumer JB, Chandler LJ, Lanier SM (2002) Expression analysis and subcellular distribution of the two G-protein regulators AGS3 and LGN indicate distinct functionality: localization of LGN to the midbody during cytokinesis. J Biol Chem 277:15897–15903

    Article  PubMed  CAS  Google Scholar 

  • Blumer JB, Smrcka AV, Lanier SM (2007) Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther 113:488–506

    Article  PubMed  CAS  Google Scholar 

  • Bowers MS, McFarland K, Lake RW, Peterson YK, Lapish CC, Gregory ML, Lanier SM, Kalivas PW (2004) Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron 42:269–281

    Article  PubMed  CAS  Google Scholar 

  • Bowers MS, Hopf FW, Chou JK, Guillory AM, Chang SJ, Janak PH, Bonci A, Diamond I (2008) Nucleus accumbens AGS3 expression drives ethanol seeking through G beta gamma. Proc Natl Acad Sci USA 105:12533–12538

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  PubMed  CAS  Google Scholar 

  • Choi EJ, Wong ST, Hinds TR, Storm DR (1992) Calcium and muscarinic agonist stimulation of type-I adenylyl cyclase in whole cells. J Biol Chem 267:12440–12442

    PubMed  CAS  Google Scholar 

  • Coleman DE, Berghuis AM, Lee E, Linder ME, Gilman AG, Sprang SR (1994) Structures of active conformations of G(I-Alpha-1) and the mechanism of GTP hydrolysis. Science 265:1405–1412

    Article  PubMed  CAS  Google Scholar 

  • Cooper DMF, Yoshimura M, Zhang YX, Chiono M, Mahey R (1994) Capacitative Ca2+ entry regulates Ca2+ sensitive adenylyl cyclases. Biochem J 297:437–440

    PubMed  CAS  Google Scholar 

  • Cumbay MG, Watts VJ (2001) Heterologous sensitization of recombinant adenylate cyclases by activation of D-2 dopamine receptors. J Pharmacol Exp Ther 297:1201–1209

    PubMed  CAS  Google Scholar 

  • De Vries L, Fischer T, Tronchere H, Brothers GM, Strockbine B, Siderovski DP, Farquhar MG (2000) Activator of G protein signaling 3 is a guanine dissociation inhibitor for G alpha(i) subunits. Proc Natl Acad Sci USA 97:14364–14369

    Article  PubMed  Google Scholar 

  • DiRocco DP, Scheiner ZS, Sindreu CB, Chan GCK, Storm DR (2009) A role for calmodulin-stimulated adenylyl cyclases in cocaine sensitization. J Neurosci 29:2393–2403

    Article  PubMed  CAS  Google Scholar 

  • Fan PD, Jiang Z, Diamond I, Yao LN (2009) Up-regulation of AGS3 during morphine withdrawal promotes cAMP superactivation via adenylyl cyclase 5 and 7 in rat nucleus accumbens/striatal neurons. Mol Pharmacol 76:526–533

    Article  PubMed  CAS  Google Scholar 

  • Federman AD, Conklin BR, Schrader KA, Reed RR, Bourne HR (1992) Hormonal-stimulation of adenylyl cyclase through Gi-protein beta-gamma-subunits. Nature 356:159–161

    Article  PubMed  CAS  Google Scholar 

  • Gilman AG (1987) G-proteins: transducers of Receptor-generated signals. Annu Rev Biochem 56:615–649

    Article  PubMed  CAS  Google Scholar 

  • Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (1995) Agonist-Receptor efficacy.II. Agonist trafficking of receptor Signals. Trends Pharmacol Sci 16:232–238

    Article  PubMed  CAS  Google Scholar 

  • Koch WJ, Hawes BE, Inglese J, Luttrell LM, Lefkowitz RJ (1994) Cellular expression of the carboxyl-terminus of a G-protein-coupled receptor kinase attenuates G(beta-gamma)-mediated signaling. J Biol Chem 269:6193–6197

    PubMed  CAS  Google Scholar 

  • Lambright DG, Noel JP, Hamm HE, Sigler PB (1994) Structural determinants for activation of the alpha-subunit of a heterotrimeric G-protein. Nature 369:621–628

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Saiardi A, Valverde O, Samad TA, Roques BP, Borrelli E (1997) Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388:586–589

    Article  PubMed  CAS  Google Scholar 

  • McClung CA, Nestler EJ (2003) Regulation of gene expression and cocaine reward by CREB and delta FosB. Nat Neurosci 6:1208–1215

    Article  PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Mixon MB, Lee E, Coleman DE, Berghuis AM, Gilman AG, Sprang SR (1995) Tertiary and quaternary structural-changes in G(I-Alpha-1) induced by GTP hydrolysis. Science 270:954–960

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  PubMed  CAS  Google Scholar 

  • Neubig RR, Siderovski DR (2002) Regulators of G-protein signalling as new central nervous system drug targets. Nat Rev Drug Discov 1:187–197

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CH, Watts VJ (2005) Dexras1 blocks receptor-mediated heterologous sensitization of adenylyl cyclase 1. Biochem Biophys Res Commun 332:913–920

    Article  PubMed  CAS  Google Scholar 

  • Oner SS, An NF, Vural A, Breton B, Bouvier M, Blumer JB, Lanier SM (2010) Regulation of the AGS3-G alpha(i) signaling complex by a seven-transmembrane span receptor. J Biol Chem 285:33949–33958

    Article  PubMed  CAS  Google Scholar 

  • Oner SS, Maher EM, Gabay M, Tall GG, Blumer JB, Lanier SM (2013) Regulation of the G-protein regulatory-G alpha(i) signaling complex by nonreceptor guanine nucleotide exchange factors. J Biol Chem 288:3003–3015

    Article  PubMed  CAS  Google Scholar 

  • Peterson YK, Bernard ML, Ma HZ, Hazard S, Graber SG, Lanier SM (2000) Stabilization of the GDP-bound conformation of Gi alpha by a peptide derived from the G-protein regulatory motif of AGS3. J Biol Chem 275:33193–33196

    Article  PubMed  CAS  Google Scholar 

  • Peterson YK, Hazard S, Graber SG, Lanier SM (2002) Identification of structural features in the G-protein regulatory motif required for regulation of heterotrimeric G-proteins. J Biol Chem 277:6767–6770

    Article  PubMed  CAS  Google Scholar 

  • Phillips TJ, Brown KJ, Burkhart-Kasch S, Wenger CD, Kelly MA, Rubinstein M, Grandy DK, Low MJ (1998) Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D-2 receptors. Nat Neurosci 1:610–615

    Article  PubMed  CAS  Google Scholar 

  • Pizzinat N, Takesono A, Lanier SM (2001) Identification of a truncated form of the G-protein regulator AGS3 in heart that lacks the tetratricopeptide repeat domains. J Biol Chem 276:16601–16610

    Article  PubMed  CAS  Google Scholar 

  • Przybyla JA, Watts VJ (2010) Ligand-induced regulation and localization of cannabinoid CB1 and dopamine D-2L receptor heterodimers. J Pharmacol Exp Ther 332:710–719

    Article  PubMed  CAS  Google Scholar 

  • Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, Grandy DK, Low MJ, Geyer MA (1999) The dopamine D-2, but not D-3 or D-4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19:4627–4633

    PubMed  CAS  Google Scholar 

  • Sato M, Gettys TW, Lanier SM (2004) AGS3 and signal integration by G alpha(s)- and G alpha(i)-coupled receptors: AGS3 blocks the sensitization of adenylyl cyclase following prolonged stimulation of a G alpha(i)-coupled receptor by influencing processing of G alpha(i). J Biol Chem 279:13375–13382

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Wachten S, Halls M, Everett K, Cooper D (2012) Muscarinic receptors stimulate AC2 by novel phosphorylation sites, whereas Gbetagamma subunits exert opposing effects depending on the G-protein source. Biochem J 447:393–405

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480

    Article  PubMed  CAS  Google Scholar 

  • Takesono A, Cismowski MJ, Ribas C, Bernard M, Chung P, Hazard S, Duzic E, Lanier SM (1999) Receptor-independent activators of heterotrimeric G-protein signaling pathways. J Biol Chem 274:33202–33205

    Article  PubMed  CAS  Google Scholar 

  • Taussig R, Quarmby LM, Gilman AG (1993) Regulation of purified type-I and type-II adenylyl cyclases by G-protein beta-gamma-subunits. J Biol Chem 268:9–12

    PubMed  CAS  Google Scholar 

  • Taussig R, Tang WJ, Hepler JR, Gilman AG (1994) Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases. J Biol Chem 269:6093–6100

    PubMed  CAS  Google Scholar 

  • Tsu RC, Wong YH (1996) G(i)-mediated stimulation of type II adenylyl cyclase is augmented by G(q)-coupled receptor activation and phorbol ester treatment. J Neurosci 16:1317–1323

    PubMed  CAS  Google Scholar 

  • Varga EV, Stropova D, Rubenzik M, Wang M, Landsman RS, Roeske WR, Yamamura HI (1998) Identification of adenylyl cyclase isoenzymes in CHO and B82 cells. Eur J Pharmacol 348:R1–R2

    Article  PubMed  CAS  Google Scholar 

  • Visel A, Alvarez-Bolado G, Thaller C, Eichele G (2006) Comprehensive analysis of the expression patterns of the adenylate cyclase gene family in the developing and adult mouse brain. J Comp Neurol 496:684–697

    Article  PubMed  CAS  Google Scholar 

  • Vural A, Oner S, An N, Simon V, Ma D, Blumer JB, Lanier SM (2010) Distribution of activator of G-protein signaling 3 within the aggresomal pathway: role of specific residues in the tetratricopeptide repeat domain and differential regulation by the AGS3 binding partners Gi alpha and mammalian inscuteable. Mol Cell Biol 30:1528–1540

    Article  PubMed  CAS  Google Scholar 

  • Watts VJ, Neve KA (2005) Sensitization of adenylate cyclase by G alpha(i/o)-coupled receptors. Pharmacol Ther 106:405–421

    Article  PubMed  CAS  Google Scholar 

  • Webb CK, McCudden CR, Willard FS, Kimple RJ, Siderovski DP, Oxford GS (2005) D2 dopamine receptor activation of potassium channels is selectively decoupled by G alpha(i)-specific GoLoco motif peptides. J Neurochem 92:1408–1418

    Article  PubMed  CAS  Google Scholar 

  • Weiner DM, Levey AI, Sunahara RK, Niznik HB, Odowd BF, Seeman P, Brann MR (1991) D1 and D2 dopamine receptor messenger-RNA in rat-brain. Proc Natl Acad Sci USA 88:1859–1863

    Article  PubMed  CAS  Google Scholar 

  • Yao L, McFarland K, Fan P, Jiang Z, Inoue Y, Diamond I (2005) Activator of G protein signaling 3 regulates opiate activation of protein kinase A signaling and relapse of heroin-seeking behavior. Proc Natl Acad Sci USA 102:8746–8751

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M, Cooper DMF (1993) Type-specific stimulation of adenylylcyclase by protein-kinase-C. J Biol Chem 268:4604–4607

    PubMed  CAS  Google Scholar 

  • Zimmermann G, Taussig R (1996) Protein kinase C alters the responsiveness of adenylyl cyclases to G protein alpha and beta gamma subunits. J Biol Chem 271:27161–27166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Elisabeth Garland and Dr. Karin Ejendal for valuable comments regarding manuscript preparation and Monica Soto Velasquez and Tarsis Brust Fernandes for assistance with confocal microscopy and receptor saturation binding, respectively. We also thank Dr. Stephen Lanier and Dr. Joe Blumer for AGS3 constructs. This work was supported by NIMH Grant MH060397 to VJW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Val J. Watts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 278 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conley, J.M., Watts, V.J. Differential Effects of AGS3 Expression on D2L Dopamine Receptor-Mediated Adenylyl Cyclase Signaling. Cell Mol Neurobiol 33, 551–558 (2013). https://doi.org/10.1007/s10571-013-9925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9925-8

Keywords

Navigation