Skip to main content

Advertisement

Log in

Rhes: A GTP-Binding Protein Integral to Striatal Physiology and Pathology

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Rhes, the Ras Homolog Enriched in Striatum, is a GTP-binding protein whose gene was discovered during a screen for mRNAs preferentially expressed in rodent striatum. This 266 amino acid protein is intermediate in size between small Ras-like GTP-binding proteins and α-subunits of heterotrimeric G proteins. It is most closely related to another Ras-like GTP-binding protein termed Dexras1 or AGS1. Although subsequent studies have shown that the rhes gene is expressed in other brain areas in addition to striatum, the striatal expression level is relatively high, and Rhes protein is likely to play a vital role in striatal physiology and pathology. Indeed, it has recently been shown to interact with the Huntingtin protein and play a pivotal role in the selective vulnerability of striatum in Huntington’s disease (HD). Not surprisingly, Rhes can interact with multiple proteins to affect striatal physiology at multiple levels. Functional studies have indicated that Rhes plays a role in signaling by striatal G protein-coupled receptors (GPCR), although the details of the mechanism remain to be determined. Rhes has been shown to bind to both α- and β-subunits of heterotrimeric G proteins and to affect signaling by both Gi/o- and Gs/olf-coupled receptors. In this context, Rhes can be classified as a member of the family of accessory proteins to GPCR signaling. With documented effects in dopamine- and opioid-mediated behaviors, an interaction with thyroid hormone systems and a role in HD pathology, Rhes is emerging as an important protein in striatal physiology and pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agretti P, De Marco G, Pinchera A, Vitti P, Bernal J, Tonacchera M (2007) Ras homolog enriched in striatum inhibits the functional activity of wild type thyrotropin, follicle-stimulating hormone, luteinizing hormone receptors and activating thyrotropin receptor mutations by altering their expression in COS-7 cells. J Endocrinol Invest 30:279–284

    PubMed  CAS  Google Scholar 

  • Altar CA, Walter RJ, Neve KA, Marshall JF (1984) Computer assisted video analysis of [3H] spiroperidol binding autoradiographs. J Neurosci Methods 10:173–188

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu J-M, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273

    Article  PubMed  CAS  Google Scholar 

  • Bernal J, Nunez J (1995) Thyroid hormones and brain development. Eur J Endocrinol 133:390–398

    Article  PubMed  CAS  Google Scholar 

  • Bonacci TM, Mathews JL, Yuan C, Lehmann DM, Malik S, Wu D, Font JL, Bidlack JM, Smrcka AV (2006) Differential targeting of Gβγ-subunit signaling with small molecules. Science 312:443–446

    Article  PubMed  CAS  Google Scholar 

  • Bowers MS, McFarland K, Lake RW, Peterson YK, Lapish CC, Gregory ML, Lanier SM, Kalivas PW (2004) Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron 42:269–281

    Article  PubMed  CAS  Google Scholar 

  • Cali JJ, Balcueva EA, Rybalkin I, Robishaw JD (1992) Selective tissue distribution of G protein γ subunits, including a new form of the γ subunits identified by cDNA cloning. J Biol Chem 267:24023–24027

    PubMed  CAS  Google Scholar 

  • Chan SLF, Monks LK, Gao H, Deaville P, Morgan NG (2002) Identification of the monomeric G-protein, Rhes, as an efaroxan-regulated protein in the pancreatic β-cell. Br J Pharmacol 136:31–36

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Weiss B (1991) Ontogenetic expression of D2 dopamine receptor mRNA in rat corpus striatum. Dev Brain Res 63:95–104

    Article  CAS  Google Scholar 

  • Ciobanu DC, Lu L, Mozhui K, Wang X, Jagalur M, Morris JA, Taylor WT, Dietz K, Simon P, Williams RW (2010) Detection, validation, and downstream analysis of allelic variation in gene expression. Genetics 184:119–128

    Article  PubMed  CAS  Google Scholar 

  • Cismowski MJ, Ma C, Ribas C, Xie X, Spruyt M, Lizano JS, Lanier SM, Duzic E (2000) Activation of heterotrimeric G-protein signaling by a ras-related protein: implications for signal integration. J Biol Chem 275:23421–23424

    Article  PubMed  CAS  Google Scholar 

  • Clifford JJ, Tighe O, Croke DT, Kinsella A, Sibley DR, Drago J, Waddington JL (1999) Conservation of behavioral topography to dopamine D1-like receptor agonists in mutant mice lacking the D1A receptor implicates a D1-like receptor not coupled to adenylyl cyclase. Neuroscience 93:1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich ME, Rosen NL, Kurihara T, Shalaby IA, Greengard P (1990) DARPP-32 development in the caudate nucleus is independent of afferent input from the substantia nigra. Dev Brain Res 54:257–263

    Article  CAS  Google Scholar 

  • Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA (2004) Convergent evidence for impaired AKT1-GSK3β signaling in Schizophrenia. Nat Genet 36:131–137

    Article  PubMed  CAS  Google Scholar 

  • Errico F, Santini E, Migliarini S, Borgkvist A, Centonze D, Nasti V, Carta M, De Chiara V, Prosperetti C, Spano D, Herve D, Pasqualetti M, Di Lauro R, Fisone G, Usiello A (2008) The GTP-binding protein Rhes modulates dopamine signaling in striatal medium spiny neurons. Mol Cell Neurosci 37:335–345

    Article  PubMed  CAS  Google Scholar 

  • Falk JD, Vargiu P, Foye PE, Usui H, Perez J, Danielson PE, Lerner DL, Bernal J, Sutcliffe JG (1999) Rhes: a striatal-specific ras homolog related to Dexras1. J Neurosci Res 57:782–788

    Article  PubMed  CAS  Google Scholar 

  • Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH (2000) Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28:183–193

    Article  PubMed  CAS  Google Scholar 

  • Finlan BS, Andres DA (1997) Rem is a new member of the Rad- and Gem/Kir Ras-related GTP-binding protein family repressed by lipopolysaccharide stimulation. J Biol Chem 272:21982–21988

    Article  Google Scholar 

  • Garcia-Marcos M, Ear J, Farquhar MG, Ghosh P (2011) A GDI (AGS3) and a GEF (GIV) regulate autophagy by balancing G protein activity and growth factor signals. Mol Biol Cell 22:673–686

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Beas AO, Bornheimer SJ, Garcia-Marcos M, Forry EP, Johannson C, Ear J, Jung BH, Cabrera B, Carethers JM, Farquhar MG (2010) A Gαi-GIV molecular complex binds epidermal growth factor receptor and determines whether cells migrate or proliferate. Mol Cell Biol 21:2338–2354

    Article  CAS  Google Scholar 

  • Glatt CE, Snyder SH (1993) Cloning and expression of adenylyl cyclase localized to the corpus striatum. Nature 361:536–538

    Article  PubMed  CAS  Google Scholar 

  • Graham TE, Key TA, Kilpatrick K, Dorin RI (2001) Dexras1/AGS1, a steroid hormone-induced guanosine triphosphate-binding protein, inhibits 3′,5′-cyclic adenosine monophosphate-stimulated secretion in AtT-20 corticotroph cells. Endocrinology 142:2631–2640

    Article  PubMed  CAS  Google Scholar 

  • Hakansson K, Galdi S, Hendrick J, Snyder G, Greengard P, Fisone G (2006) Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 96:482–488

    Article  PubMed  Google Scholar 

  • Han I, You Y, Kordower JH, Brady ST, Morfini GA (2010) Differential vulnerability of neurons in Huntington’s disease: the role of cell type-specific features. J Neurochem 113:1073–1091

    PubMed  CAS  Google Scholar 

  • Harrison LM, He YE (2011) Rhes and AGS1/Dexras1 affect signaling by dopamine D1 receptors through adenylyl cyclase. J Neurosci Res 89:874–882

    Article  PubMed  CAS  Google Scholar 

  • Harrison LM, LaHoste GJ (2006) Rhes, the Ras homolog enriched in striatum, is reduced under conditions of dopamine supersensitivity. Neuroscience 137:483–492

    Article  PubMed  CAS  Google Scholar 

  • Harrison LM, LaHoste GJ, Ruskin DN (2008) Ontogeny and dopaminergic regulation in brain of Ras homolog enriched in striatum (Rhes). Brain Res 1245:16–25

    Article  PubMed  CAS  Google Scholar 

  • Herve D, Levi-Strauss M, Marey-Semper I, Verney C, Tassin J-P, Glowinski J, Girault J-A (1993) Golf and Gs in rat basal ganglia: possible involvement of Golf in coupling of dopamine D1 receptor with adenylyl cyclase. J Neurosci 13:2237–2248

    PubMed  CAS  Google Scholar 

  • Hill C, Goddard A, Ladds G, Davey J (2009) The cationic region of Rhes mediates its interactions with specific Gβ subunits. Cell Physiol Biochem 23:01–08

    Article  CAS  Google Scholar 

  • Joyce JN, Loeschen SK, Marshall JF (1985) Dopamine D-2 receptors in rat caudate-putamen: the lateral to medial gradient does not correspond to dopaminergic innervation. Brain Res 338:209–218

    Article  PubMed  CAS  Google Scholar 

  • Kemppainen RJ, Behrend EN (1998) Dexamethasone rapidly induces a novel ras superfamily member-related gene in AtT-20 cells. J Biol Chem 273:3129–3131

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed  Google Scholar 

  • LaHoste GJ, Marshall JF (1992) Dopamine supersensitivity and D1/D2 synergism are unrelated to changes in striatal receptor density. Synapse 12:14–26

    Article  PubMed  CAS  Google Scholar 

  • Lee FA, Baiamonte BA, Spano D, LaHoste GJ, Soignier RD, Harrison LM (2011) Mice lacking rhes show altered morphine analgesia, tolerance, and dependence. Neurosci Lett 489:182–186

    Article  PubMed  CAS  Google Scholar 

  • Liu Y-L, Fann CS-J, Liu C-M, Chen WJ, Wu J-Y, Hung S-l, Chen C-H, Jou Y-S, Liu S-K, Hwang T-J, Hsieh MH, Chang CC, Yang W-C, Lin J-J, Chou FH-C, Faraone SV, Tsuang MT, Hwa H-G (2008) RASD2, MYH9, and CACNG2 genes at chromosome 22q12 associated with the subgroup of schizophrenia with non-deficit in sustained attention and executive function. Biol Psychiatry 64:789–796

    Article  PubMed  CAS  Google Scholar 

  • Luthman J, Lindqvist E, Young D, Cowburn R (1990) Neonatal dopamine lesion in the rat results in enhanced adenylate cyclase activity without altering dopamine receptor binding or dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein (DARPP-32) immunoreactivity. Exp Brain Res 83:85–95

    Article  PubMed  CAS  Google Scholar 

  • Maguire J, Santoro T, Jensen P, Siebenlist U, Yewdell J, Kelly K (1994) Gem: an induced, immediate early protein belonging to the Ras family. Science 265:241–244

    Article  PubMed  CAS  Google Scholar 

  • Mandel RL, Randall PK (1985) Quantification of lesion-induced dopaminergic supersensitivity using the rotational model in the mouse. Brain Res 330:358–363

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Meador-Woodruff JH, Bunzow JR, Civelli O, Akil H, Watson SJ (1990) Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in rat brain and pituitary: and in situ hybridization-receptor autoradiographic analysis. J Neurosci 10:2587–2600

    PubMed  CAS  Google Scholar 

  • Mansour A, Meador-Woodruff JH, Zhou Q, Civelli O, Akil H, Watson SJ (1992) A comparison of D1 receptor binding and mRNA in rat brain using receptor autoradiographic and in situ hybridization techniques. Neuroscience 46:959–971

    Article  PubMed  CAS  Google Scholar 

  • Manzano J, Morte B, Scanlan TS, Bernal J (2003) Differential effects of triiodothyronine and the thyroid hormone receptor β-specific agonist GC-1 on thyroid hormone target genes in the brain. Endocrinology 144:5480–5487

    Article  PubMed  CAS  Google Scholar 

  • Marshall JF, Ungerstedt U (1977) Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: quantification using the rotational model. Eur J Pharmacol 41:361–367

    Article  PubMed  CAS  Google Scholar 

  • Masri B, Salahpour A, Didriksen M, Ghisi V, Beaulieu J-M, Gainetdinov RR, Caron MG (2008) Antagonism of dopamine D2 receptor/β-arrestin 2 interaction is a common property of clinically effective antipsychotics. Proc Natl Acad Sci 105:13656–13661

    Article  PubMed  CAS  Google Scholar 

  • Mathews JL, Smrcka A, Bidlack JM (2008) A novel Gβγ-subunit inhibitor selectively modulates μ-opioid-dependent antinociception and attenuates acute morphine-induced antinociceptive tolerance and dependence. J Neurosci 28:12183–12189

    Article  PubMed  CAS  Google Scholar 

  • Morice C, Nothias F, Konig S, Vernier P, Baccarini M, Vincent J-D, Barnier JV (1999) Raf-1 and B-Raf proteins have similar regional distributions but differential subcellular localization in adult rat brain. Eur J Neurosci 11:1995–2006

    Article  PubMed  CAS  Google Scholar 

  • Newton PM, Kim JA, McGeehan AJ, Paredes JP, Chu K, Wallace MJ et al (2007) Increased response to morphine in mice lacking protein kinase C epsilon. Genes Brain Behav 6:29–38

    Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s Disease. Mov Disord 23:S548–S559

    Article  PubMed  Google Scholar 

  • Okamoto S, Pouladi MA, Talantova M, Yao D, Xia P, Ehrnhoefer DE, Zaidi R, Clemente A, Kaul M, Graham RK, Zhang D, Chen H-SV, Tong G, Hayden MR, Lipton SA (2009) Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant Huntingtin. Nat Med 15:1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Perez-Costas E, Melendez-Ferro M, Roberts RC (2010) Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem 113:287–302

    Article  PubMed  CAS  Google Scholar 

  • Porterfield SP, Hendrich CE (1993) The role of thyroid hormones in prenatal and neonatal neurological development—current perspectives. Endocr Rev 14:94–106

    PubMed  CAS  Google Scholar 

  • Quintero GQ, Spano D, LaHoste GJ, Harrison LM (2008) The Ras homolog Rhes affects dopamine D1 and D2 receptor-mediated behavior in mice. NeuroReport 19:1563–1566

    Article  PubMed  CAS  Google Scholar 

  • Seredenina T, Gokce O, Luthi-Carter R (2011) Decreased striatal RGS2 expression is neuroprotective in Huntington’s disease (HD) and exemplifies a compensatory aspect of HD-induced gene regulation. PLoS ONE 6:e22231. doi:10.1371/journal.pone.0022231

    Article  PubMed  CAS  Google Scholar 

  • Sharoyko VV, Zaitseva II, Varsanyi M, Portwood N, Leibiger B, Leibiger I, Berggren P-O, Efendic S, Zaitsev SV (2005) Monomeric G-protein, Rhes, is not an imidazoline-regulated protein in pancreatic β-cells. Biochem Biophys Res Comm 338:1455–1459

    Article  PubMed  CAS  Google Scholar 

  • Shukla PK, Tang L, Wang ZJ (2006) Phosphorylation of neurogranin, protein kinase C, and Ca2+/calmodulin dependent kinase II in opioid tolerance and dependence. Neurosci Lett 404:266–269

    Article  PubMed  CAS  Google Scholar 

  • Smith FL, Lohmann AB, Dewey WL (1999) Involvement of phospholipid signal transduction pathways in morphine tolerance in mice. Br J Pharmacol 128:220–226

    Article  PubMed  CAS  Google Scholar 

  • Spano D, Branchi I, Rosica A, Pirro MT, Riccio A, Mithbaokar P, Affuso A, Arra C, Campolongo P, Terracciano D, Macchia V, Bernal J, Alleva E, Di Lauro R (2004) Rhes is involved in striatal function. Mol Cell Biol 24:5788–5796

    Article  PubMed  CAS  Google Scholar 

  • St. Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S, Snyder SH (2011) Huntington’s disease is a disorder of the corpus striatum: focus on Rhes (Ras homologue enriched in striatum). Neuropharmacology 60:1187–1192

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S, Sixt KM, Barrow R, Snyder SH (2009) Rhes, a striatal specific protein, mediates mutant-Huntingtin cytotoxicity. Science 324:1327–1330

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S, Mealer RG, Sixt KM, Barrow RK, Usiello A, Snyder SH (2010) Rhes, a physiologic regulator of sumoylation, enhances cross-sumoylation among the basic sumoylation enzymes E1 and UBC9. J Biol Chem 285:20428–20432

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S, Napolitano F, Mealer RG, Kim S, Errico F, Barrow R, Shahani N, Tyagi R, Snyder SH, Usiello A (2012) Rhes, a striatal-enriched small G protein, mediates mTOR signaling and L-DOPA-induced dyskinesia. Nat Neurosci. doi:10.1038/nn.2994

    Google Scholar 

  • Taylor JP, Jackson DA, Morgan NG, Chan SLF (2006) Rhes expression in pancreatic β-cells is regulated by efaroxan in a calcium-dependent process. Biochem Biophys Res Comm 349:809–815

    Article  PubMed  CAS  Google Scholar 

  • Thapliyal A, Bannister RA, Hanks C, Adams BA (2008) The monomeric G proteins AGS1 and Rhes selectively influence Gαi-dependent signaling to modulate N-type (Cav2.2) calcium channels. Am J Physiol Cell Physiol 295:C1417–C1426

    Article  PubMed  CAS  Google Scholar 

  • Undie AS, Weinstock J, Sarau HM, Freidman E (1994) Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain. J Neurochem 62:2045–2048

    Article  PubMed  CAS  Google Scholar 

  • Undie AS, Berki AC, Beardsley K (2000) Dopaminergic behaviors and signal transduction mediated through adenylate cyclase and phospholipase C pathways. Neuropharmacology 39:75–87

    Article  PubMed  CAS  Google Scholar 

  • Usui H, Falk JD, Dopazo A, de Lecea L, Erlander MG, Sutcliffe JG (1994) Isolation of clones of rat striatum-specific mRNAs by directional tag PCR subtraction. J Neurosci 14:4915–4926

    PubMed  CAS  Google Scholar 

  • Vallortigara J, Alfos S, Micheau J, Higueret P, Enderlin V (2008) T3 administration in adult hypothyroid mice modulates expression of proteins involved in striatal synaptic plasticity and improves motor behavior. Neurobiol Dis 31:378–385

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara J, Chassande O, Higueret P, Enderlin V (2009) Thyroid hormone receptor alpha plays an essential role in the normalisation of adult-onset hypothyroidism-related hypoexpression of synaptic plasticity target genes in striatum. J Neuroendocrinol 21:49–56

    Article  PubMed  CAS  Google Scholar 

  • Vargiu P, Morte B, Manzano J, Perez J, de Abajo R, Sutcliffe JG, Bernal J (2001) Thyroid hormone regulation of rhes, a novel Ras homolog gene expressed in the striatum. Mol Brain Res 94:1–8

    Article  PubMed  CAS  Google Scholar 

  • Vargiu P, De Abajo R, Garcia-Ranea JA, Valencia A, Santisteban P, Crespo P, Bernal J (2004) The small GTP-binding protein, Rhes, regulates signal transduction from G protein-coupled receptors. Oncogene 23:559–568

    Article  PubMed  CAS  Google Scholar 

  • Walaas SI, Aswad DW, Greengard P (1983) A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 301:69–71

    Article  PubMed  CAS  Google Scholar 

  • Watson JB, Coulter PM, Margulies JE, de Lecea L, Danielson PE, Erlander MG, Sutcliff JG (1994) G protein gamma 7 subunit is selectively expressed in medium-sized neurons and dendrites of the rat neostriatum. J Neurosci Res 39:108–116

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Samoriski GM, McLaughlin JP, Romoser VA, Smrcka A, Hinckle PM et al (1999) Genetic alteration of phospholipase C β3 expression modulates behavioral and cellular responses to μ opioids. Proc Natl Acad Sci USA 96:10385–10390

    Article  PubMed  CAS  Google Scholar 

  • Zeitz KP, Malmberg AB, Gilbert H, Basbaum AI (2001) Reduced development of tolerance to the analgesic effects of morphine and clonidine in PKCγ mutant mice. Pain 94:245–253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is supported by NIH Grant P20RR016816 and Louisiana Board of Regents Grant LEQSF(2009-11)-RD-A-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, L.M. Rhes: A GTP-Binding Protein Integral to Striatal Physiology and Pathology. Cell Mol Neurobiol 32, 907–918 (2012). https://doi.org/10.1007/s10571-012-9830-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9830-6

Keywords

Navigation