Skip to main content
Log in

Chronic Stress Decreases Availability of Heat Shock Proteins to Glucocorticoid Receptor in Response to Novel Acute Stress in Wistar Rat Hypothalamus

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Chronic psychosocial isolation (CPSI) is known to cause several maladaptive changes in the limbic brain structures, which regulate the hypothalamic–pituitary–adrenal (HPA) axis activity. In this study, we focused our investigation on CPSI effects in the hypothalamus (HT) since it is a major driver of HPA axis activity. We also investigated whether the exposure to CPSI could alter the response to subsequent acute stress (30-min immobilization). In the HT, we followed cytosolic and nuclear levels of the glucocorticoid receptor (GR), as a mediator of HPA axis feedback inhibition, and its chaperones, the heat shock proteins (HSPs), hsp70 and hsp90. The CPSI did not cause any changes in either GR or HSPs levels. However, we observed increase of the GR and hsp70 in both HT cellular compartments as a response of naïve rats to acute stress, whereas the response of CPSI rats to acute stress was associated with elevation of the GR in the cytosol and decrease of HSPs in the nucleus. Thus, our data indicated reduced availability of HSPs to GR in both cytosol and nucleus of the HT under acute stress of CPSI animals, and therefore, pointed out to potentially negative effects of CPSI on GR function in the HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adzic M, Djordjevic J, Djordjevic A, Niciforovic A, Demonacos C, Radojcic M, Krstic-Demonacos M (2009) Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain. J Endocrinol 202(1):87–97

    Article  PubMed  CAS  Google Scholar 

  • Aronsson M, Fuxe K, Dong Y, Agnati LF, Okret S, Gustafsson JA (1988) Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization. Proc Natl Acad Sci USA 85(23):9331–9335

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar S, Dallman M (1998) Neuroanatomical basis for facilitation of hypothalamic–pituitary–adrenal responses to a novel stressor after chronic stress. Neuroscience 84(4):1025–1039

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar S, Vining C (2003) Facilitation of hypothalamic–pituitary–adrenal responses to novel stress following repeated social stress using the resident/intruder paradigm. Horm Behav 43(1):158–165

    Article  PubMed  CAS  Google Scholar 

  • Cadepond F, Schweizer-Groyer G, Segard-Maurel I, Jibard N, Hollenberg SM, Giguere V, Evans RM, Baulieu EE (1991) Heat shock protein 90 as a critical factor in maintaining glucocorticosteroid receptor in a nonfunctional state. J Biol Chem 266(9):5834–5841

    PubMed  CAS  Google Scholar 

  • Chen S, Smith DF (1998) Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J Biol Chem 273(52):35194–35200

    Article  PubMed  CAS  Google Scholar 

  • de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475

    Article  PubMed  Google Scholar 

  • DeFranco DB (2000) Role of molecular chaperones in subnuclear trafficking of glucocorticoid receptors. Kidney Int 57(4):1241–1249

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic A, Adzic M, Djordjevic J, Radojcic MB (2009) Stress type dependence of expression and cytoplasmic-nuclear partitioning of glucocorticoid receptor, hsp90 and hsp70 in Wistar rat brain. Neuropsychobiology 59(4):213–221

    Article  PubMed  CAS  Google Scholar 

  • Elbi C, Walker DA, Romero G, Sullivan WP, Toft DO, Hager GL, DeFranco DB (2004) Molecular chaperones function as steroid receptor nuclear mobility factors. Proc Natl Acad Sci USA 101(9):2876–2881

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo HF, Bodie BL, Tauchi M, Dolgas CM, Herman JP (2003) Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144(12):5249–5258

    Article  PubMed  CAS  Google Scholar 

  • Ford GK, Al-Barazanji KA, Wilson S, Jones DN, Harbuz MS, Jessop DS (2005) Orexin expression and function: glucocorticoid manipulation, stress, and feeding studies. Endocrinology 146(9):3724–3731

    Article  PubMed  CAS  Google Scholar 

  • Furay AR, Murphy EK, Mattson MP, Guo Z, Herman JP (2006) Region-specific regulation of glucocorticoid receptor/HSP90 expression and interaction in brain. J Neurochem 98(4):1176–1184

    Article  PubMed  CAS  Google Scholar 

  • Galigniana MD, Harrell JM, Murphy PJ, Chinkers M, Radanyi C, Renoir JM, Zhang M, Pratt WB (2002) Binding of hsp90-associated immunophilins to cytoplasmic dynein: direct binding and in vivo evidence that the peptidylprolyl isomerase domain is a dynein interaction domain. Biochemistry 41(46):13602–13610

    Article  PubMed  CAS  Google Scholar 

  • Garcia A, Marti O, Valles A, Dal-Zotto S, Armario A (2000) Recovery of the hypothalamic–pituitary–adrenal response to stress. Effect of stress intensity, stress duration and previous stress exposure. Neuroendocrinology 72(2):114–125

    Article  PubMed  CAS  Google Scholar 

  • Grad I, Picard D (2007) The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol 275(1–2):2–12

    Article  PubMed  CAS  Google Scholar 

  • Grippo AJ, Gerena D, Huang J, Kumar N, Shah M, Ughreja R, Carter CS (2007) Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles. Psychoneuroendocrinology 32(8–10):966–980

    Article  PubMed  CAS  Google Scholar 

  • Hall FS (1998) Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Crit Rev Neurobiol 12(1–2):129–162

    PubMed  CAS  Google Scholar 

  • Heinrich LM, Gullone E (2006) The clinical significance of loneliness: a literature review. Clin Psychol Rev 26(6):695–718

    Article  PubMed  Google Scholar 

  • Kang KI, Meng X, Devin-Leclerc J, Bouhouche I, Chadli A, Cadepond F, Baulieu EE, Catelli MG (1999) The molecular chaperone Hsp90 can negatively regulate the activity of a glucocorticosteroid-dependent promoter. Proc Natl Acad Sci USA 96(4):1439–1444

    Article  PubMed  CAS  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92(5):2177–2186

    PubMed  CAS  Google Scholar 

  • Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  PubMed  CAS  Google Scholar 

  • Lam CK, Chari M, Lam TK (2009) CNS regulation of glucose homeostasis. Physiology (Bethesda) 24:159–170

    Article  CAS  Google Scholar 

  • Liu J, DeFranco DB (1999) Chromatin recycling of glucocorticoid receptors: implications for multiple roles of heat shock protein 90. Mol Endocrinol 13(3):355–365

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  • Morimoto M, Morita N, Ozawa H, Yokoyama K, Kawata M (1996) Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci Res 26(3):235–269

    Article  PubMed  CAS  Google Scholar 

  • Murphy EK, Spencer RL, Sipe KJ, Herman JP (2002) Decrements in nuclear glucocorticoid receptor (GR) protein levels and DNA binding in aged rat hippocampus. Endocrinology 143(4):1362–1370

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Makino S, Matsumoto R, Nakayama S, Nishiyama M, Terada Y, Hashimoto K (2010) Regulation of glucocorticoid receptor transcription and nuclear translocation during single and repeated immobilization stress. Endocrinology 151(9):4344–4355

    Article  PubMed  CAS  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci 115(Pt 14):2809–2816

    PubMed  CAS  Google Scholar 

  • Patchev VK, Brady LS, Karl M, Chrousos GP (1994) Regulation of HSP90 and corticosteroid receptor mRNA by corticosterone levels in vivo. Mol Cell Endocrinol 103(1–2):57–64

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16(8):857–872

    Article  PubMed  CAS  Google Scholar 

  • Radojcic M, Adzic M, Niciforovic A, Djordjevic J, Djordjevic A, Demonacos C, Krstic-Demonacos M (2012) Effects of chronic psychosocial isolation on limbic brain structures of Wistar rats. In: Costa A, Villalba E (eds) Horizons in neuroscience research, vol 5. Nova Science Publishers, New York, pp 97–126

    Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21(1):55–89

    Article  PubMed  CAS  Google Scholar 

  • Smith DF, Toft DO (1993) Steroid receptors and their associated proteins. Mol Endocrinol 7(1):4–11

    Article  PubMed  CAS  Google Scholar 

  • Spencer RL, Kalman BA, Cotter CS, Deak T (2000) Discrimination between changes in glucocorticoid receptor expression and activation in rat brain using western blot analysis. Brain Res 868(2):275–286

    Article  PubMed  CAS  Google Scholar 

  • Stavreva DA, Muller WG, Hager GL, Smith CL, McNally JG (2004) Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol Cell Biol 24(7):2682–2697

    Article  PubMed  CAS  Google Scholar 

  • Stevens A, Begum G, Cook A, Connor K, Rumball C, Oliver M, Challis J, Bloomfield F, White A (2010) Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinology 151(8):3652–3664

    Article  PubMed  CAS  Google Scholar 

  • Stricker-Krongrad A, Beck B (2002) Modulation of hypothalamic hypocretin/orexin mRNA expression by glucocorticoids. Biochem Biophys Res Commun 296(1):129–133

    Article  PubMed  CAS  Google Scholar 

  • Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4(2):141–194

    Article  PubMed  CAS  Google Scholar 

  • Tasker JG (2006) Rapid glucocorticoid actions in the hypothalamus as a mechanism of homeostatic integration. Obesity (Silver Spring) 14(Suppl 5):259S–265S

    Article  CAS  Google Scholar 

  • Vamvakopoulos NC, Fukuhara K, Patchev V, Chrousos GP (1993) Effect of single and repeated immobilization stress on the heat shock protein 70/90 system of the rat: glucocorticoid-independent, reversible reduction of Hsp90 in the liver and spleen. Neuroendocrinology 57(6):1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Wallace DL, Han MH, Graham DL, Green TA, Vialou V, Iniguez SD, Cao JL, Kirk A, Chakravarty S, Kumar A, Krishnan V, Neve RL, Cooper DC, Bolanos CA, Barrot M, McClung CA, Nestler EJ (2009) CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat Neurosci 12(2):200–209

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are gratefully appreciative of the support provided by the Ministry of Education and Sciences of Serbia for this study (Grant III41029).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Adzic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simic, I., Mitic, M., Djordjevic, J. et al. Chronic Stress Decreases Availability of Heat Shock Proteins to Glucocorticoid Receptor in Response to Novel Acute Stress in Wistar Rat Hypothalamus. Cell Mol Neurobiol 32, 625–632 (2012). https://doi.org/10.1007/s10571-012-9811-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9811-9

Keywords

Navigation