Skip to main content

Advertisement

Log in

New Age of Neuroproteomics in Alzheimer’s Disease Research

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the leading cause of dementia, a condition that gradually destroys brain cells and leads to progressive decline in mental functions. The disease is characterized by accumulation of misfolded neuronal proteins, amyloid and tau, into insoluble aggregates known as extracellular senile plaques and intracellular neurofibrillary tangles, respectively. However, only tau pathology appears to correlate with the progression of the disease and it is believed to play a central role in the progression of neurodegeneration. In AD, tau protein undergoes various types of posttranslational modifications, most notably hyperphosphorylation and truncation. Using four proteomics approaches we aimed to uncover the key steps leading to neurofibrillary degeneration and thus to identify therapeutic targets for AD. Functional neuroproteomics was employed to generate the first transgenic rat model of AD by expressing a truncated misordered form of tau, “Alzheimer’s tau”. The rat model showed that Alzheimer’s tau toxic gain of function is responsible for the induction of abnormal tau cascade and is the driving force in the development of neurofibrillary degeneration. Structural neuroproteomics allowed us to determine partial 3D structure of the Alzheimer’s filament core at a resolution of 1.6 Å. Signaling neuroproteomics data lead to the identification and characterization of relevant phosphosites (the tau phosphosignalome) contributing to neurodegeneration. Interaction neuroproteomics revealed links to a new group of proteins interacting with Alzheimer’s tau (tau interactome) under normal and pathological conditions, which would provide novel drug targets and novel biomarkers for treatment of AD and other tauopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. doi:10.1038/nature01511

    Article  PubMed  CAS  Google Scholar 

  • Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 91(12):5562–5566. doi:10.1073/pnas.91.12.5562

    Article  PubMed  CAS  Google Scholar 

  • Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2(7):783–787. doi:10.1038/nm0796-783

    Article  PubMed  CAS  Google Scholar 

  • Alzheimer A (1907) Über eine eigenartigeErkrankung der Hirnrinde. Allg Z Psychiatry Psych-Gerichtl Med 64:146–148

    Google Scholar 

  • Baker M, Kwok JB, Kucera S, Crook R, Farrer M, Houlden H, Isaacs A, Lincoln S, Onstead L, Hardy J, Wittenberg L, Dodd P, Webb S, Hayward N, Tannenberg T, Andreadis A, Hallupp M, Schofield P, Dark F, Hutton M (1997) Localization of frontotemporal dementia with parkinsonism in an Australian kindred to chromosome 17q21–22. Ann Neurol 42(5):794–798. doi:10.1002/ana.410420516

    Article  PubMed  CAS  Google Scholar 

  • Baudier J, Cole RD (1988) Interactions between the microtubule-associated tau proteins and S100b regulate tau phosphorylation by the Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 263(12):5876–5883

    PubMed  CAS  Google Scholar 

  • Berriman J, Serpell LC, Oberg KA, Fink AL, Goedert M, Crowther RA (2003) Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc Natl Acad Sci USA 100(15):9034–9038. doi:10.1073/pnas.1530287100

    Article  PubMed  CAS  Google Scholar 

  • Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 1739(2–3):216–223

    PubMed  CAS  Google Scholar 

  • Caceres A, Kosik KS (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343(6257):461–463. doi:10.1038/343461a0

    Article  PubMed  CAS  Google Scholar 

  • Cente M, Filipcik P, Pevalova M, Novak M (2006) Expression of a truncated tau protein induces oxidative stress in a rodent model of tauopathy. Eur J NeuroSci 24(4):1085–1090. doi:10.1111/j.1460-9568.2006.04986.x

    Article  PubMed  Google Scholar 

  • Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114(Pt 6):1179–1187

    PubMed  CAS  Google Scholar 

  • Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S, Zlatkovic J, Eckman CB, Patterson C, Dickson DW, Nahman NS Jr, Hutton M, Burrows F, Petrucelli L (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648–658. doi:10.1172/JCI29715

    Article  PubMed  CAS  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312(5771):212–217. doi:10.1126/science.1124619

    Article  PubMed  CAS  Google Scholar 

  • Eidenmuller J, Fath T, Maas T, Pool M, Sontag E, Brandt R (2001) Phosphorylation-mimicking glutamate clusters in the proline-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein. Biochem J 357(Pt 3):759–767. doi:10.1042/0264-6021:3570759

    Article  PubMed  CAS  Google Scholar 

  • Esmaeli-Azad B, McCarty JH, Feinstein SC (1994) Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J Cell Sci 107(Pt 4):869–879

    PubMed  CAS  Google Scholar 

  • Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503):2112–2117. doi:10.1016/S0140-6736(05)67889-0

    Article  PubMed  Google Scholar 

  • Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, LaPointe N, Miller R, Berry RW, Binder LI, Cryns VL (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100(17):10032–10037. doi:10.1073/pnas.1630428100

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890. doi:10.1016/S0006-291X(84)80190-4

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526. doi:10.1016/0896-6273(89)90210-9

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Crowther RA, Spillantini MG (1998) Tau mutations cause frontotemporal dementias. Neuron 21(5):955–958. doi:10.1016/S0896-6273(00)80615-7

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261(13):6084–6089

    PubMed  CAS  Google Scholar 

  • Hanemaaijer R, Ginzburg I (1991) Involvement of mature tau isoforms in the stabilization of neurites in PC12 cells. J Neurosci Res 30(1):163–171. doi:10.1002/jnr.490300117

    Article  PubMed  CAS  Google Scholar 

  • Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH (2007) Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem 282(32):23645–23654. doi:10.1074/jbc.M703269200

    Article  PubMed  CAS  Google Scholar 

  • Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, Sato-Yoshitake R, Takei Y, Noda T, Hirokawa N (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369(6480):488–491. doi:10.1038/369488a0

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi T, Uryu K, Giasson BI, Ischiropoulos H, LightFoot R, Bellmann C, Richter-Landsberg C, Lee VM, Trojanowski JQ (2003) Nitration of tau protein is linked to neurodegeneration in tauopathies. Am J Pathol 163(3):1021–1031

    PubMed  CAS  Google Scholar 

  • Hrnkova M, Zilka N, Minichova Z, Koson P, Novak M (2007) Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats. Brain Res 1130(1):206–213. doi:10.1016/j.brainres.2006.10.085

    Article  PubMed  CAS  Google Scholar 

  • Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP–17. Nature 393(6686):702–705. doi:10.1038/31508

    Article  PubMed  CAS  Google Scholar 

  • Inouye H, Sharma D, Goux WJ, Kirschner DA (2006) Structure of core domain of fibril-forming PHF/Tau fragments. Biophys J 90(5):1774–1789. doi:10.1529/biophysj.105.070136

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K, Grundke-Iqbal I (2008) Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med 12(1):38–55. doi:10.1111/j.1582-4934.2008.00225.x

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, Khatoon S, Li B, Liu F, Rahman A, Tanimukai H, Grundke-Iqbal I (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739(2–3):198–210

    PubMed  CAS  Google Scholar 

  • Ivanovova N, Handzusova M, Hanes J, Kontsekova E, Novak M (2008) High-yield purification of fetal tau preserving its structure and phosphorylation pattern. J Immunol Methods 339(1):17–22. doi:10.1016/j.jim.2008.07.014

    Article  PubMed  CAS  Google Scholar 

  • Jensen PH, Hager H, Nielsen MS, Hojrup P, Gliemann J, Jakes R (1999) Alpha-synuclein binds to Tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem 274(36):25481–25489. doi:10.1074/jbc.274.36.25481

    Article  PubMed  CAS  Google Scholar 

  • Khuebachova M, Verzillo V, Skrabana R, Ovecka M, Vaccaro P, Panni S, Bradbury A, Novak M (2002) Mapping the C terminal epitope of the Alzheimer’s disease specific antibody MN423. J Immunol Methods 262(1–2):205–215. doi:10.1016/S0022-1759(02)00006-6

    Article  PubMed  CAS  Google Scholar 

  • Koson P, Zilka N, Kovac A, Kovacech B, Korenova M, Filipcik P, Novak M (2008) Truncated tau expression levels determine life span of a rat model of tauopathy without causing neuronal loss or correlating with terminal neurofibrillary tangle load. Eur J NeuroSci 28(2):239–246. doi:10.1111/j.1460-9568.2008.06329.x

    Article  PubMed  Google Scholar 

  • Lee G (2005) Tau and src family tyrosine kinases. Biochim Biophys Acta 1739(2–3):323–330

    PubMed  CAS  Google Scholar 

  • Lim J, Lu KP (2005) Pinning down phosphorylated tau and tauopathies. Biochim Biophys Acta 1739(2–3):311–322

    PubMed  CAS  Google Scholar 

  • Liu F, Li B, Tung EJ, Grundke-Iqbal I, Iqbal K, Gong CX (2007) Site-specific effects of tau phosphorylation on its microtubule assembly activity and self-aggregation. Eur J NeuroSci 26(12):3429–3436

    Article  PubMed  Google Scholar 

  • Magnani E, Fan J, Gasparini L, Golding M, Williams M, Schiavo G, Goedert M, Amos LA, Spillantini MG (2007) Interaction of tau protein with the dynactin complex. EMBO J 26(21):4546–4554. doi:10.1038/sj.emboj.7601878

    Article  PubMed  CAS  Google Scholar 

  • Mesco ER, Timiras PS (1991) Tau-ubiquitin protein conjugates in a human cell line. Mech Ageing Dev 61(1):1–9. doi:10.1016/0047-6374(91)90002-H

    Article  PubMed  CAS  Google Scholar 

  • Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Titani K, Ihara Y (1993) Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron 10(6):1151–1160. doi:10.1016/0896-6273(93)90063-W

    Article  PubMed  CAS  Google Scholar 

  • Mukrasch MD, von Bergen M, Biernat J, Fischer D, Griesinger C, Mandelkow E, Zweckstetter M (2007) The “jaws” of the tau-microtubule interaction. J Biol Chem 282(16):12230–12239. doi:10.1074/jbc.M607159200

    Article  PubMed  CAS  Google Scholar 

  • Novak M (1994) Truncated tau protein as a new marker for Alzheimer’s disease. Acta Virol 38(3):173–189

    PubMed  CAS  Google Scholar 

  • Novak M, Wischik CM, Edwards P, Pannell R, Milstein C (1989) Characterisation of the first monoclonal antibody against the pronase resistant core of the Alzheimer PHF. Prog Clin Biol Res 317:755–761

    PubMed  CAS  Google Scholar 

  • Novak M, Jakes R, Edwards PC, Milstein C, Wischik CM (1991) Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc Natl Acad Sci USA 88(13):5837–5841. doi:10.1073/pnas.88.13.5837

    Article  PubMed  CAS  Google Scholar 

  • Pevalova M, Filipcik P, Novak M, Avila J, Iqbal K (2006) Post-translational modifications of tau protein. Bratisl Lek Listy (Tlacene Vyd) 107(9–10):346–353

    CAS  Google Scholar 

  • Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 99(9):6364–6369. doi:10.1073/pnas.092136199

    Article  PubMed  CAS  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754. doi:10.1126/science.1141736

    Article  PubMed  CAS  Google Scholar 

  • Ruben GC, Iqbal K, Grundke-Iqbal I, Wisniewski HM, Ciardelli TL, Johnson JE Jr (1991) The microtubule-associated protein tau forms a triple-stranded left-hand helical polymer. J Biol Chem 266(32):22019–22027

    PubMed  CAS  Google Scholar 

  • Schneider A, Biernat J, von Bergen M, Mandelkow E, Mandelkow EM (1999) Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38(12):3549–3558. doi:10.1021/bi981874p

    Article  PubMed  CAS  Google Scholar 

  • Seabrook GR, Ray WJ, Shearman M, Hutton M (2007) Beyond amyloid: the next generation of Alzheimer’s disease therapeutics. Mol Interv 7(5):261–270. doi:10.1124/mi.7.5.8

    Article  PubMed  CAS  Google Scholar 

  • Sevcik J, Skrabana R, Dvorsky R, Csokova N, Iqbal K, Novak M (2007) X-ray structure of the PHF core C-terminus: insight into the folding of the intrinsically disordered protein tau in Alzheimer’s disease. FEBS Lett 581(30):5872–5878. doi:10.1016/j.febslet.2007.11.067

    Article  PubMed  CAS  Google Scholar 

  • Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4(10):817–821. doi:10.1038/nmeth1097

    Article  PubMed  CAS  Google Scholar 

  • Skrabana R, Kontsek P, Mederlyova A, Iqbal K, Novak M (2004) Folding of Alzheimer’s core PHF subunit revealed by monoclonal antibody 423. FEBS Lett 568(1–3):178–182. doi:10.1016/j.febslet.2004.04.098

    Article  PubMed  CAS  Google Scholar 

  • Skrabana R, Sevcik J, Novak M (2006) Intrinsically disordered proteins in the neurodegenerative processes: formation of tau protein paired helical filaments and their analysis. Cell Mol Neurobiol 26(7–8):1085–1097. doi:10.1007/s10571-006-9083-3

    PubMed  CAS  Google Scholar 

  • Steinhilb ML, Dias-Santagata D, Fulga TA, Felch DL, Feany MB (2007a) Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol Biol Cell 18(12):5060–5068. doi:10.1091/mbc.E07-04-0327

    Article  PubMed  CAS  Google Scholar 

  • Steinhilb ML, Dias-Santagata D, Mulkearns EE, Shulman JM, Biernat J, Mandelkow EM, Feany MB (2007b) S/P and T/P phosphorylation is critical for tau neurotoxicity in Drosophila. J Neurosci Res 85(6):1271–1278. doi:10.1002/jnr.21232

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11(4):739–756. doi:10.1110/ps.4210102

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246. doi:10.1146/annurev.biophys.37.032807.125924

    Article  PubMed  CAS  Google Scholar 

  • Visser NF, Heck AJ (2008) Surface plasmon resonance mass spectrometry in proteomics. Expert Rev Proteomics 5(3):425–433. doi:10.1586/14789450.5.3.425

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44(1):181–193. doi:10.1016/j.neuron.2004.09.010

    Article  PubMed  CAS  Google Scholar 

  • Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988a) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85(13):4884–4888. doi:10.1073/pnas.85.13.4884

    Article  PubMed  CAS  Google Scholar 

  • Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A (1988b) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85(12):4506–4510. doi:10.1073/pnas.85.12.4506

    Article  PubMed  CAS  Google Scholar 

  • Zilka N, Filipcik P, Koson P, Fialova L, Skrabana R, Zilkova M, Rolkova G, Kontsekova E, Novak M (2006) Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 580(15):3582–3588. doi:10.1016/j.febslet.2006.05.029

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants VEGA 2/6183/26 and 2/5101/27, APVV 0631-07, APVV 0603-06, LPP-0326-06, LPP-0353-06, LPP-0354-06 and LPP-0363-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Novak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovacech, B., Zilka, N. & Novak, M. New Age of Neuroproteomics in Alzheimer’s Disease Research. Cell Mol Neurobiol 29, 799–805 (2009). https://doi.org/10.1007/s10571-009-9358-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9358-6

Keywords

Navigation