Skip to main content
Log in

Concentration of Nucleosides and Related Compounds in Cerebral and Cerebellar Cortical Areas and White Matter of the Human Brain

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

1. Nucleosides potentially participate in the neuronal functions of the brain. However, their distribution and changes in their concentrations in the human brain is not known. For better understanding of nucleoside functions, changes of nucleoside concentrations by age and a complete map of nucleoside levels in the human brain are actual requirements.

2. We used post mortem human brain samples in the experiments and applied a recently modified HPLC method for the measurement of nucleosides. To estimate concentrations and patterns of nucleosides in alive human brain we used a recently developed reverse extrapolation method and multivariate statistical analyses.

3. We analyzed four nucleosides and three nucleobases in human cerebellar, cerebral cortices and in white matter in young and old adults. Average concentrations of the 308 samples investigated (mean±SEM) were the following (pmol/mg wet tissue weight): adenosine 10.3±0.6, inosine 69.5±1.7, guanosine 13.5±0.4, uridine 52.4±1.2, uracil 8.4±0.3, hypoxanthine 108.6±2.0 and xanthine 54.8±1.3. We also demonstrated that concentrations of inosine and adenosine in the cerebral cortex and guanosine in the cerebral white matter are age-dependent.

4. Using multivariate statistical analyses and degradation coefficients, we present an uneven regional distribution of nucleosides in the human brain. The methods presented here allow to creation of a nucleoside map of the human brain by measuring the concentration of nucleosides in microdissected tissue samples. Our data support a functional role for nucleosides in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  • Allsop, J., and Watts, R. W. E. (1983). Purine de novo synthesis in liver and developing rat brain, and the effect of some inhibitors of purine nucleotide interconversion. Enzyme 30:172–180.

    PubMed  CAS  Google Scholar 

  • Arch, J. R. S., and Newsholme, E. A. (1978). Activities and some properties of 5′-nucleotidase, adenosine kinase and adenosine deaminase in tissues vertebrates and invertebrates in relation to the control of the concentration and the physiological role of adenosine. Biochem. J. 174:965–977.

    PubMed  CAS  Google Scholar 

  • Barsotti, C., and Ipata, P. L. (2004). Metabolic regulation of ATP breakdown and of adenosine production in rat brain extracts. Int. J. Biochem. Cell Biol. 36:2214–2225.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S. J., Carter, J. G. , and Lowry, O. H. (1985). Distribution of guanine deaminase in mouse brain. J. Neurochem. 44:1736–1740.

    Article  PubMed  CAS  Google Scholar 

  • Bialkowska, A., Bialkowski, K., Gerschenson, M., Diwan, B. A., Jones, A. B., Olivero, O. A., Poirier, M. C., Anderson, L. M., Kasprzak, K. S., and Sipowicz, M. A. (2000). Oxidative DNA damage in fetal tissues after transplacental exposure to 3′-azido-3′-deoxythymidine (AZT). Carcinogenesis 21:1059–1062.

    Article  PubMed  CAS  Google Scholar 

  • Borowsky, I. W., and Collins, R. C. (1989). Metabolic anatomy of brain: A comparison of regional capillary density, glucose metabolism, and enzyme activities. J. Comp. Neurol. 288:401–413.

    Article  PubMed  CAS  Google Scholar 

  • Borst, P., Balzarini, J., Ono, N., Reid, G., de Vries, H., Wielinga, P., Wijnholds, J., and Zelcer, N. (2004). The potential impact of drug transporters on nucleoside-analog-based antiviral chemotherapy. Antiviral Res. 62:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Brosh, S., Sperling, O., Bromberg, Y., and Sidi, Y. (1990). Developmental changes in the activity of enzymes of purine metabolism in rat neuronal cells in culture and in whole brain. J. Neurochem. 54:1776–1781.

    Article  PubMed  CAS  Google Scholar 

  • Brosh, S., Zoref-Shani, E., Danziger, E., Bromberg, Y., Sperling, O., and Sidi, Y. (1996). Adenine nucleotide metabolism in primary rat neuronal cultures. Int. J. Biochem. Cell Biol. 28:319–328.

    Article  PubMed  CAS  Google Scholar 

  • Carrera, C. J., Saven, A., and Piro, L. D. (1994). Purine metabolism of lymphocytes. Targets for chemotherapy drug development. Hematol. Oncol. Clin. North Am. 8:357–381.

    PubMed  CAS  Google Scholar 

  • Ceballos, G., Tuttle, J. B., and Rubio, R. (1994). Differential distribution of purine metabolizing enzymes between glia and neurons. J. Neurochem. 62:1144–1153.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T. H. , Wang, M. F., Liang, Y. F., Komatsu, T., Chan, Y. C., Chung, S. Y., and Yamamoto, S. (2000). A nucleoside–nucleotide mixture may reduce memory deterioration in old senescence-accelerated mice. J. Nutr. 130:3085–3089.

    PubMed  CAS  Google Scholar 

  • Ciccarelli, R., Ballerini, P., Sabatino, G., Rathbone, M. P., D’Onofrio, M., Caciagli, F., and Di Iorio, P. (2001). Involvement of astrocytes in purine-mediated reparative processes in the brain. Int. J. Dev. Neurosci. 19:395–414.

    Article  PubMed  CAS  Google Scholar 

  • Dessi, F., Pollard, H., Moreau, J., Ben-Ari, Y., and Charriaut-Marlangue, C. (1995). Cytosine arabinoside induces apoptosis in cerebellar neurons in culture. J. Neurochem. 64:1980–1987.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, M. C., Scheibel, A. B., Murphy, G. M. Jr., and Harvey, T. (1985). On the brain of a scientist: Albert Einstein. Exp. Neurol. 88:198–204.

    Article  PubMed  CAS  Google Scholar 

  • Dobolyi, Á., Reichart, A., Szikra, T., Szilágyi, N., Kékesi, A. K., Karancsi, T., Slégel, P., Palkovits, M., and Juhász, G. (1998). Analysis of purine and pyrimidine bases, nucleosides and deoxynucleosides in brain microsamples (microdialysates and micropunches) and cerebrospinal fluid . Neurochem. Int. 32:247–256.

    Article  PubMed  CAS  Google Scholar 

  • Eells, J. T., and Spector, R. (1983). Identification, development, and regional distribution of ribonucleoside reductase in adult rat brain. J. Neurochem. 40:1008–1012.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Z. C. Roberts, E. L. Jr., Sick, T. J., and Rosenthal, M. (1988). Depth profile of local oxygen tension and blood flow in rat cerebral cortex, white matter and hippocampus. Brain Res. 445:280–288.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, J. L. (1991). 5′-Nucleotidase activity increases in aging rat brain. Neurobiol. Aging 12:523–530.

    Article  PubMed  CAS  Google Scholar 

  • Ghandour, M. S., Vincendon, G., and Gombos, G. (1980). Astrocyte and oligodendrocyte distribution in adult rat cerebellum: An immunohistological study. J. Neurocytol. 9:637–646.

    Article  PubMed  CAS  Google Scholar 

  • Hair, J. F., Tatham, R. L., Anderson, R. E., and Black, W. (1998). Multivariate Data Analysis. Prentice Hall.

  • Hansen, S. W. (2002). Gemcitabine, platinum, and paclitaxel regimens in patients with advanced ovarian carcinoma. Semin. Oncol. 29:17–19.

    Article  PubMed  CAS  Google Scholar 

  • Hauber, W., and Bareiss, A. (2001). Facilitative effects of an adenosine A1/A2 receptor blockade on spatial memory performance of rats: Selective enhancement of reference memory retention during the light period. Behav. Brain Res. 118:43–52.

    Article  PubMed  CAS  Google Scholar 

  • Herrström, S. A., Wang, L., and Eriksson, S. (2001). Antiviral guanosine analogs as substrates for deoxyguanosine kinase: implications for chemotherapy. Antimicrob. Agents Chemother. 45:739–742.

    Article  Google Scholar 

  • Kovács, Zs., Kékesi, K. A., Bobest, M., Török, T., Szilágyi, N., Szikra, T., Szepesi, Zs., Nyilas, R., Dobolyi, Á., Palkovits, M., and Juhász, G. (2005). Post mortem degradation of nucleosides in the brain: Comparison of human and rat brains for estimation of in vivo concentration of nucleosides. J. Neurosci. Meth. 148:88–93.

    Google Scholar 

  • Leuba, G., and Garey, L. J. (1989). Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man. Exp. Brain Res. 77:31–38.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, D. R. (1991). Neurologic complications of chemotherapy. Neurol. Clin. 9:955–967.

    PubMed  CAS  Google Scholar 

  • Major, P. P., Agarwal, R. P., and Kufe, D. W. (1981). Deoxycoformycin: Neurological toxicity. Cancer Chemother. Pharm. 5:193–196.

    Article  CAS  Google Scholar 

  • Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis (Probability and Mathematical Statistics). Academic Press.

  • Meghji, P., Tuttle, J. B., and Rubio, R. (1989). Adenosine formation and release by embrionic chick neurons and glia in cell culture. J. Neurochem. 53:1852–1860.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, H., Mimori, Y., Nakamura, S., and Kameyama, M. (1984). Regional and subcellular distribution in mammalian brain of the enzymes producing adenosine. J. Neurochem. 42:1001–1007.

    PubMed  CAS  Google Scholar 

  • Norstrand, I. F., Siverls, V. C., and Libbin, R. M. (1984). Regional distribution of adenosine deaminase in the human neuraxis. Enzyme 32:20–25.

    PubMed  CAS  Google Scholar 

  • O’Kusky, J., and Colonnier, M. (1982). A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. J. Comp. Neurol. 210:278–290.

    Article  PubMed  CAS  Google Scholar 

  • Ono-Yagi, K., Ohno, M., Iwami, M., Takano, T., Yamano, T., and Shimada, M. (2000). Heterotopia in microcephaly induced by cytosine arabinoside: Hippocampus in the neocortex. Acta Neuropathol. 100:403–408.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M. (1973). Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res. 59:449–450.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, F. E., Sinclair, C. J. D., Othman, T., Haughey, N. J., and Geiger, J. D. (2002). Differences between rat primary cortical neurons and astrocytes in purine release evoked by ischemic conditions. Neuropharmacology 43:836–846.

    Article  PubMed  CAS  Google Scholar 

  • Pazzagli, M., Corsi, C., Fratti, S., Pedata, F., and Pepeu, G. (1995). Regulation of extracellular adenosine levels in the striatum of aging rats. Brain Res. 684:103–106.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, E., and Newsholme, E. A. (1979). Maximum activities, properties and distribution of 5′-nucleotidase, adenosine kinase and adenosine deaminase in rat and human brain. J. Neurochem. 33:553–558.

    Article  PubMed  CAS  Google Scholar 

  • Rachlis, A., and Fanning, M. M. (1993). Zidovudine toxicity. Clinical features and management. Drug Safety 8:312–320.

    PubMed  CAS  Google Scholar 

  • Radulovacki, M., Virus, R. M., Djuricic-Nedelson, M., and Green, R. D. (1984). Adenosine analogs and sleep in rats. J. Pharmacol. Exp. Ther. 228:268–274.

    PubMed  CAS  Google Scholar 

  • Sharma, S. (1996). Applied Multivariate Techniques. Wiley, New York, Toronto.

    Google Scholar 

  • Suleiman, S. A., and Spector, R. (1982). Identification, development, and regional distribution of thymidilate synthase in adult rabbit brain. J. Neurochem. 38:392–396.

    Article  PubMed  CAS  Google Scholar 

  • Williams, M. (1990). Purine nucleosides and nucleotides as central nervous system modulators. Adenosine as the prototypic paracrine neuroactive substance. Ann. N. Y. Acad. Sci. 603:93–107.

    PubMed  CAS  Google Scholar 

  • Xu, K., Bastia, E., and Schwarzschild, M. (2005). Therapautic potential of adenosine A2A receptor antagonists in Parkinson's disease. Pharmacol. Ther. 105:267–310.

    Article  PubMed  CAS  Google Scholar 

  • Yu, A. L., Bakay, B., Kung, F. H., and Nyhan, W. L. (1981). Effects of 2′-deoxycoformycin on the metabolism of purines and the survival of malignant cells in a patient with T-cell leukemia. Cancer Res. 41:2677–2682.

    PubMed  CAS  Google Scholar 

  • Zimmermann, H. (1992). 5′-Nucleotidase: Molecular structure and functional aspects. Biochem. J. 285:345–365.

    PubMed  CAS  Google Scholar 

  • Zoref-Shani, E., Bromberg, Y., Lilling, G., Gozes, I., Brosh, S., Sidi, Y., and Sperling, O. (1995). Developmental changes in purine nucleotide metabolism in cultured rat astroglia. Int. J. Dev. Neurosci. 13:887–896.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by MEDICHEM II., DNTTK RET Grant, and OTKA 044711 for G. Juhász and Neurobiology Research Group and OTKA T034496 for M. Palkovits and Bolyai Grant of HAS for K.A. Kékesi. A part of the study was supported by Scientific Foundation of BDF and NYRFT (NYD-18-1308-02/0C) for Zs. Kovács.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklós Palkovits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kékesi, K.A., Kovács, Z., Szilágyi, N. et al. Concentration of Nucleosides and Related Compounds in Cerebral and Cerebellar Cortical Areas and White Matter of the Human Brain. Cell Mol Neurobiol 26, 831–842 (2006). https://doi.org/10.1007/s10571-006-9103-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9103-3

KEY WORDS:

Navigation