Skip to main content
Log in

Characterization of Exocytotic Events From Single PC12 Cells: Amperometric Studies in Native PC12h, DA-Loaded PC12h and Bovine Adrenal Chromaffin Cells

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Exocytotic events from rat pheochromocytoma (PC12) cells were characterized by amperometric analysis. For single-cell amperometric recordings, PC12h cells cultured onto poly-L-lysine corted glass-base dish were incubated with 1 mM dopamine (DA) for 60 min. Amperometric recordings, with a carbon fiber microelectrode (5 μm diameter), of catecholamine release from the individual cells were conducted under an inverted microscope at 25 C. To characterize a single exocytotic event that is detected as a single spike current, the spike number, spike parameters (rise time, middle width and area) and spike shape were analyzed. Exposure of DA-loaded PC12h cells to 60 mM KCl (1000 hps) for 5 min and for 4 s evoked a train of events with the event number of 114± 19 (spikes/response for 5 min) and 12± 3 (spikes/response for 15 s), respectively. We observed distinctive kinetics in the events (rise time = 0.83± 0.19 ms, middle width = 2.89± 0.62 ms, area = 62± 7.6 fC and the spikes with a “foot” = 15.4± 2.7% of total spikes). The number and mean height of the events were 3- to 4-fold higher than that in DA-unloaded cells, and the values of rise time and middle width in DA-loaded PC12h cells were approx. 5- and 10-fold less than those observed in cultured adrenal chromaffin cells. The successful application of amperometry to monitor DA released from secretory vesicles in DA-loaded PC12h cell suggest that this technique is applicable to characterize exocytotic events in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez de Toledo, G., Fernandez-Chacon, R., and Fernandez, J. M. (1993). Release of secretory products during transient vesicle fusion. Nature 363:554–558.

    Article  PubMed  Google Scholar 

  • Augustine, G. J. (2001). How does calcium trigger neurotransmitter release? Curr. Opin. Neurobiol. 11:320–326.

    Article  PubMed  Google Scholar 

  • Borges, R., Machado, J. D., Betancor, G., and Camacho, M. (2002). Pahrmacological regulation of the late steps of exocytosis. In Connor D. T. O’ and Eiden, L. E. (eds.), The Chromaffin Cell. Transmitter Biosynthesis, Storage, Release, Actions, and Informatics. Ann. N.Y. Acad. Sci. 971:184–192, The New York Academy of Sciences, New York.

  • Bruns, D., and Jahn, R. (1995). Real-time measurement of transmitter release from single synaptic vesicles. Nature 377:62–65.

    Article  PubMed  Google Scholar 

  • Burgoyne, R. D., and Morgan, A. (2003). Secretory granule exocytosis. Physiol. Rev. 83:581–632.

    PubMed  Google Scholar 

  • Chen, T. K., Luo, G., and Ewing, A. G. (1994). Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at the zeptomole level. Anal. Chem. 66:3031–3035.

    Article  PubMed  Google Scholar 

  • Chen, G., Gavin, P. F., Luo, G., and Ewing, A. G. (1995). Observation and quantitation of exocytosis from the cell body of a fully developed neuron in Planoebis corneus. J. Neurosci. 15:7747–7755.

    PubMed  Google Scholar 

  • Coupland, R. E. (1968). Determining sizes and distribution of sizes of spherical bodies such as chromaffin granules in tissue sections. Nature 217:384–388.

    PubMed  Google Scholar 

  • Chow, R. H., von Ruden, L., and Neher, E. (1992). Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356:60–63.

    Article  PubMed  Google Scholar 

  • De Camilli, P., and Jahn, R. (1990). Pathways to regulated exocytosis in neurons. Annu. Rev. Physiol. 52:625–645.

    Article  PubMed  Google Scholar 

  • Gong, L.-W., Hafez, I., Alvarez de Toledo, G., and Lindau, M. (2003). Secretory vesicles membrane area is regulated in tandem with quantal size in chromaffin cells. J. Neurosci. 23:7917–7921.

    PubMed  Google Scholar 

  • Graham, M. E., Fisher, R. J., and Burgoyne, R. D. (2000). Measurement of exocytosis by amperometry in adrenal chromaffin cells: Effects of clostridial neurotoxins and activation of protein kinase C on fusion pore kinetics. Biochimie 82:469–479.

    Article  PubMed  Google Scholar 

  • Graham, M. E., and Burgoyne, R. D. (2000). Comparison of cystein string protein (Csp) and mutant α-SNAP overexpression reveals a role for Csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells. J. Neurosci. 20:1281–1289.

    PubMed  Google Scholar 

  • Greene, L. A., and Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U.S.A. 73:2424–2428.

    PubMed  Google Scholar 

  • Hatanaka, H. (1981). Nerve growth factor-mediated stimulation of tyrosine hydroxylase activity in a clonal rat pheochromocytoma cell line. Brain Res. 222:225–233.

    Article  PubMed  Google Scholar 

  • Hochestetler, S. E., Puopolo, M., Gustincich, S., Raviola, E., and Wightman, R. M. (2000). Real-time amperometric measurements of zeptomole quantities of dopamine released from neurons. Anal. Chem. 72:489–496.

    Article  PubMed  Google Scholar 

  • Inoue, K., Nakazawa, K., Fujimori, K., and Takanaka, A. (1989). Extracellular adenosine 5′-triphosphate-evoked norepinephrine secretion not relating to voltage-gated Ca channels in pheochromocytoma PC12 cells. Neurosci. Lett. 106:294–299.

    Article  PubMed  Google Scholar 

  • Jahn, R., and Sudhof, T. C. (1999). Membrane fusion and exocytosis. Annu. Rev. Biochem. 68:863–911.

    Article  PubMed  Google Scholar 

  • Jankowski, J. A., Schroeder, T. J., Holz, R. W., and Wightman, R. M. (1992). Quantal secretion of catecholamines measured from individual bovine adrenal chromaffin cells permeabilized with digitonin. J. Biol. Chem. 267:18329–18335.

    PubMed  Google Scholar 

  • Kozminski, K. D., Gutman, D. A., Davila, V., Sulzer, D., and Ewing, A. G. (1998). Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Anal. Chem. 70:3123–3130.

    Article  PubMed  Google Scholar 

  • Kumakura, K., Ohara, M., and Sato, G. P. (1986). Real-time monitoring of the secretory function of cultured adrenal chromaffin cells. J. Neurochem. 46:1851–1858.

    PubMed  Google Scholar 

  • Leszczyszyn, D. J., Jankoeski, J. A., Viveros, O. H., Diliberto, E. J., Jr., Near, J. A., and Wightman, R. M. (1990). Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells. Chemical evidence for exocytosis. J. Biol. Chem. 265:14736–14737.

    PubMed  Google Scholar 

  • Leszczyszyn, D. J., Jankowski, J. A., Viveros, O. H., Diliberto, E. J. Jr., Near, J. A., and Wightman, R. M. (1991). Secretion of catecholamines from individual adrenal medullary chromaffin cells. J. Neurochem. 56:1855–1863.

    PubMed  Google Scholar 

  • Leszczyszyn, D. J., Jankowski, J. A., Viveros, O. H., Diliberto, E. J. Jr., Schroeder, T. J., Holz, R. W., and Wightman, R. M. (1992). Quantal secretion of catecholamines measured from individual bovine adrenal medullary cells permeabilized with digitonin. J. Biol. Chem. 267:18329–18335.

    PubMed  Google Scholar 

  • Martin, T. F. J. (2003). Tuning exocytosis for speed: Fast and slow modes. Biochim. Biophys. Acta. 1641:157–165.

    Article  PubMed  Google Scholar 

  • Mitsuka, M., and Hatanaka, H. (1984). Increase of carbamylcholineinduced 22Na+ influx into pheochromocytoma PC12h cells by nerve growth factor. Brain Res. 314:255–260.

    PubMed  Google Scholar 

  • Nagy, G., Matti, U., Nehring, R. B., Binz, T., Rettig, J., Neher, E., and Sorensen, J. (2002). Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J. Neurosci. 22:9278–9286.

    PubMed  Google Scholar 

  • Nakazawa, K., and Inoue, K. (1992). Roles of Ca2+ influx through ATP-activated channels in catecholamine release from pheochromocytoma PC12 cells. J. Neurophysiol. 68:2026–2032.

    PubMed  Google Scholar 

  • Ninomiya, Y., Kishimoto, T., Yamazawa, T., Ikeda, H., Miyashita, Y., and Kasai, H. (1997). Kinetic diversity in the fusion of exocytotic vesicles. EMBO J. 16:929–934.

    Article  PubMed  Google Scholar 

  • Nishiki, T., Shoji-Kasai, Y., Sekiguchi, M., Iwasaki, S., Kumakura, K., and Takahashi, M. (1997). Comparison of exocytotic mechanisms between acetylcholine- and catecholamine-containing vesicles in rat pheochromocytoma cells. Biochem. Biophys. Res. Commun. 239:57–62.

    Article  PubMed  Google Scholar 

  • Ohara-Imaizumi, M., Kameyama, K., Kawae, N., Takeda, K., Muramatsu, S., and Kumakura, K. (1992). Regulatory role of the GTP-binding protein, G(o), in the mechanism of exocytosis in adrenal chromaffin cells. J. Neurochem. 58:2275–2284.

    PubMed  Google Scholar 

  • Ohyama, A., Hosaka, K., Komiya, Y., Akagawa, K., Yamauchi, E., Taniguchi, H., Sasakawa, N., Kumakura, K., Mochida, S., Yamauchi, T., and Igarashi, M. (2002). Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulin-activated protein kinase II to syntaxin 1A. J. Neurosci. 22:3342–3351.

    PubMed  Google Scholar 

  • Pothos, E., Desmond, M., and Sulzer, D. (1996). L-3,4-dihydroxyphenylalanine increases the quantal size of exoxcytotic dopamine release in vitro. J. Neurochem. 66:629–636.

    PubMed  Google Scholar 

  • Pothos, E. N., Davila, V., and Sulzer, D. (1998). Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci. 18:4106–4118.

    PubMed  Google Scholar 

  • Quetglas, S., Iborra, C., Sasakawa, N., De Haro, L., Kumakura, K., Sato, K., Leveque, C., and Seagar, M. (2002). Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J. 21:3970–3979.

    Article  PubMed  Google Scholar 

  • Ramachandran, B., Houben, K., Rozenberg, Y. Y., Haigh, J. R., Varpetian, A., and Howard, B. D. (1993). Differential expression of transporters for norepinephrine and glutamate in wild type, variant, and WNT1-expressing PC12 cells. J. Bio. Chem. 268:23891–23897.

    Google Scholar 

  • Sela, D., Ram, E., and Atlas, D. (1991). ATP receptor. A putative receptoroperated channel in PC-12 cells. J. Biol. Chem. 266:17990–17994.

    PubMed  Google Scholar 

  • Sombers, L. A., Hanchar, H. J., Colliver, T. L., Wittenberg, N., Cans, A., Arbault, S., Amotore, C., and Ewing, A. G. (2004). The effects of vesicular volume on secretion through the fusion pore in exocytotic release from PC12 cells. J. Neurosci. 24:303–309.

    Article  PubMed  Google Scholar 

  • Travis, E. R., and Wightman, R. M. (1998). Spatio-temporal resolution of exocytosis from individual cells. Annu. Rev. Biophys. Biomol. Struct. 27:77–103.

    Article  PubMed  Google Scholar 

  • Wagner, J. A. (1985). Structure of catecholamine secretory vesicles from PC12 cells. J. Neurochem. 45:1244–1253.

    PubMed  Google Scholar 

  • Wightman, R. M., Jankowski, J. A., Kennedy, R. T., Kawagoe, K. T., Schroeder, T. J., Leszczyszyn, D. J., Near, J. A., Diliberto E. J. Jr., and Viveros, O. H. (1991). Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc. Natl. Acad. Sci. U.S.A. 88:10754–10758.

    PubMed  Google Scholar 

  • Zhou, Z., and Misler, S. (1995). Amperometric detection of stimulus-induced quantal release of catecholamaines from cultured superior cervical ganglion neurons. Proc. Natl. Acad. Sci. U.S.A. 92:6938–6942.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konosuke Kumakura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasakawa, N., Murayama, N. & Kumakura, K. Characterization of Exocytotic Events From Single PC12 Cells: Amperometric Studies in Native PC12h, DA-Loaded PC12h and Bovine Adrenal Chromaffin Cells. Cell Mol Neurobiol 25, 777–787 (2005). https://doi.org/10.1007/s10571-005-3975-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-3975-5

Key Words

Navigation