Skip to main content

Advertisement

Log in

Hox Genes and Their Candidate Downstream Targets in the Developing Central Nervous System

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Homeobox (Hox) genes were originally discovered in the fruit fly Drosophila, where they function through a conserved homeodomain as transcriptional regulators to control embryonic morphogenesis. Since then over 1000 homeodomain proteins have been identified in several species. In vertebrates, 39 Hox genes have been identified as homologs of the original Drosophila complex, and like their Drosophila counterparts they are organized within chromosomal clusters. Vertebrate Hox genes have also been shown to play a critical role in embryonic development as transcriptional regulators.

2. Both the Drosophila and vertebrate Hox genes have been shown to interact with various cofactors, such as the TALE homeodomain proteins, in recognition of consensus sequences within regulatory elements of their target genes. These protein–protein interactions are believed to contribute to enhancing the specificity of target gene recognition in a cell-type or tissue- dependent manner. The regulatory activity of a particular Hox protein on a specific regulatory element is highly variable and dependent on its interacting partners within the transcriptional complex.

3. In vertebrates, Hox genes display spatially restricted patterns of expression within the developing CNS, both along the anterioposterior and dorsoventral axis of the embryo. Their restricted gene expression is suggestive of a regulatory role in patterning of the CNS, as well as in cell specification. Determining the precise function of individual Hox genes in CNS morphogenesis through classical mutational analyses is complicated due to functional redundancy between Hox genes.

4. Understanding the precise mechanisms through which Hox genes mediate embryonic morphogenesis requires the identification of their downstream target genes. Although Hox genes have been implicated in the regulation of several pathways, few target genes have been shown to be under their direct regulatory control. Development of methodologies used for the isolation of target genes and for the analysis of putative targets will be beneficial in establishing the genetic pathways controlled by Hox factors.

5. Within the developing CNS various cell adhesion molecules and signaling molecules have been identified as candidate downstream target genes of Hox proteins. These targets play a role in processes such as cell migration and differentiation, and are implicated in contributing to neuronal processes such as plasticity and/or specification. Hence, Hox genes not only play a role in patterning of the CNS during early development, but may also contribute to cell specification and identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Shaar, M., Ryoo, H. D., and Mann, R. S. (1999). Control of the nuclear localization of Extradenticle by competing nuclear import and export signals. Genes Dev. 13:935–945.

    PubMed  Google Scholar 

  • Abzhanov, A., Tzahor, E., Lassar, A. B., and Tabin, C. J. (2003). Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro. Development 130:4567–4579.

    Article  PubMed  Google Scholar 

  • Acampora, D., D’Esposito, M., Faiella, A., Pannese, M., Migliaccio, E., Morelli, F., Stornaiuolo, A., Nigro, V., Simeone, A., and Boncinelli, E. (1989). The human HOX gene family. Nucleic Acids Res. 17:10385–10402.

    PubMed  Google Scholar 

  • Affolter, M., Marty, T., and Vigano, M. A. (1999). Balancing import and export in development. Genes Dev. 13:913–915.

    PubMed  Google Scholar 

  • Akam, M. (1998a). Hox genes: From master genes to micromanagers. Curr. Biol. 8:R676–R678.

    Article  Google Scholar 

  • Akam, M. (1998b). Hox genes, homeosis and the evolution of segment identity: No need for hopeless monsters. Int. J. Dev. Biol. 42:445–451.

    Google Scholar 

  • Akasaka, T., van Lohuizen, M., van der Lugt, N., Mizutani-Koseki, Y., Kanno, M., Taniguchi, M., Vidal, M., Alkema, M., Berns, A., and Koseki, H. (2001). Mice doubly deficient for the Polycomb Group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development 128:1587–1597.

    PubMed  Google Scholar 

  • Allen, J. D., and Adams, J. M. (1993). Enforced expression of Hlx homeobox gene prompts myeloid cell maturation and altered adherence properties of T cells. Blood 81:3242–3251.

    PubMed  Google Scholar 

  • Amara, S. G. (1995). Monoamine transporters: Basic biology with clinical implications. Neuroscientist 1:259–267.

    Google Scholar 

  • Andrew, D. J., and Scott, M. P. (1992). Downstream of the homeotic genes. New Biol. 4:5–15.

    PubMed  Google Scholar 

  • Awgulewitsch, A., and Jacobs, D. (1990). Differential expression of Hox 3.1 protein in subregions of the embryonic and adult spinal cord. Development 108:411–420.

    PubMed  Google Scholar 

  • Axelrod, J., and Koplin, I. J. (1969). The uptake, storage, release and metabolism of noradrenaline in sympathetic nerves. Prog. Brain Res. 31:21–32.

    PubMed  Google Scholar 

  • Bai, S., Shi, X., Yang, X., and Cao, X. (2000). Smad6 as a Transcriptional Corepressor. J. Biol. Chem. 275:8267–8270.

    Article  PubMed  Google Scholar 

  • Balkaschina, E. I. (1929). Ein Fall der Erbhomeosis bei Drosophila melanogaster. Willhelm Roux Arch Entwicklungsmech Org. 115:448–463.

    Google Scholar 

  • Banerjee-Basu, S., and Baxevanis, A. D. (2001). Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res. 29:3258–3269.

    Article  PubMed  Google Scholar 

  • Banerjee-Basu, S., Moreland, T. M., Hsu, B. J., Trout, K. L., and Baxevanis, A. D. (2003). The Homeodomain Resource: 2003 update. Nucleic Acids Res. 31:304–306.

    Article  PubMed  Google Scholar 

  • Banerjee-Basu, S., Ryan, J. F., and Baxevanis, A. D. (2000). The Homeodomain Resource: A prototype database for a large protein family. Nucleic Acids Res. 28:329–330.

    Article  PubMed  Google Scholar 

  • Barrow, J. R., Stadler, H. S., and Capecchi, M. R. (2000). Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development 127:933–944.

    PubMed  Google Scholar 

  • Bel-Vailar, S., Core, N., Terranova, R., Goudot, V., Boned, A., and Djabali, M. (2000). Altered retinoic acid sensitivity and temporal expression of Hox genes in Polycomb-M33-deficient mice. Dev. Biol. 224:238–249.

    Article  PubMed  Google Scholar 

  • Bendall, A. J., and Abate-Shen, C. (2000). Roles for Msx and Dlx homeoproteins in vertebrate development. Gene 247:17–31.

    Article  PubMed  Google Scholar 

  • Berthelsen, J., Kilstrup-Nielsen, C., Blasi, F., Mavilio, F., and Zappavigna, V. (1999). The subcellular localization of PBX1 and EXD proteins depends on nuclear import and export signals and is modulated by association with PREP1 and HTH. Genes Dev. 13:946–953.

    PubMed  Google Scholar 

  • Berthelsen, J., Zappavigna, V., Ferretti, E., Mavilio, F., and Blasi, F. (1998a). The novel homeoprotein Prep1 modulates Pbx-Hox protein cooperativity. EMBO J. 17:1434–1445.

    Article  Google Scholar 

  • Berthelsen, J., Zappavigna, V., Mavilio, F., and Blasi, F. (1998b). Prep1, a novel functional partner of Pbx proteins. EMBO J. 17:1423–1433.

    Article  Google Scholar 

  • Bertolino, E., Reimund, B., Wildt-Perinic, D., and Clerc, R. G. (1995). A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J. Biol. Chem. 270:31178–31188.

    Article  PubMed  Google Scholar 

  • Billeter, M. (1996). Homeodomain-type DNA recognition. Prog. Biophys. Mol. Biol. 66:211–225.

    Article  PubMed  Google Scholar 

  • Billeter, M., Qian, Y., Otting, G., Muller, M., Gehring, W. J., and Wuthrich, K. (1990). Determination of the three-dimensional structure of the Antennapedia homeodomain from Drosophila in solution by 1H nuclear magnetic resonance spectroscopy. J. Mol. Biol. 214:183–197.

    PubMed  Google Scholar 

  • Billeter, M., Qian, Y. Q., Otting, G., Muller, M., Gehring, W., and Wuthrich, K. (1993). Determination of the nuclear magnetic resonance solution structure of an Antennapedia homeodomain-DNA complex. J. Mol. Biol. 234:1084–1097.

    Article  PubMed  Google Scholar 

  • Birgbauer, E., and Fraser, S. E. (1994). Violation of cell lineage restriction compartments in the chick hindbrain. Development 120:1347–1356.

    PubMed  Google Scholar 

  • Boersma, C. J. C., Bloemen, M., Hendriks, J. M. A., van Berkel, E. A. T., Olijve, W., and van Zoelen, E. J. J. (1999). Homeobox proteins as signal transduction intermediates in regulation of NCAM expression by recombinant human bone morphogenetic protein-2 in osteoblast-like cells. Mol. Cell Biol. Res. Commun. 1:117–124.

    Article  PubMed  Google Scholar 

  • Boncinelli, E. (1997). Homeobox genes and disease. Curr. Opin. Genet. Dev. 7:331–337.

    Article  PubMed  Google Scholar 

  • Boncinelli, E., Simeone, A., Acampora, D., and Mavilio, F. (1991). Hox gene activation by retinoic acid. Trends Genet. 7:329–334.

    PubMed  Google Scholar 

  • Boncinelli, E., and Morgan, R. (2001). Downstream of Otx2, or how to get a head. Trends Genet. 17:633–636.

    Article  PubMed  Google Scholar 

  • Bos, J. L., De Bruyn, K., Enserink, J., Kuiperij, B., Rangarajan, S., Rehmann, H., Riedl, J., De Rooij, J., Van Mansfeld, F., and Zwartkruis, F. (2003). The role of Rap1 in integrin-mediated cell adhesion. Biochem. Soc. Trans. 31:83–86.

    PubMed  Google Scholar 

  • Bos, J. L., de Rooij, J., and Reedquist, K. A. (2001). Rap1 signalling: Adhering to new models. Nat. Rev. Mol. Cell Biol. 2:369–377.

    Article  PubMed  Google Scholar 

  • Bosse, A., Stoykova, A., Nieselt-Struwe, K., Chowdhury, K., Copeland, N. G., Jenkins, N. A., and Gruss, P. (2000). Identification of a novel mouse Iroquois homeobox gene, Irx5, and chromosomal localisation of all members of the mouse Iroquois gene family. Dev. Dyn. 218:160–174.

    Article  PubMed  Google Scholar 

  • Bouschet, T., Perez, V., Fernandez, C., Bockaert, J., Eychene, A., and Journot, L. (2003). Stimulation of the ERK pathway by GTP-loaded Rap1 requires the concomitant activation of Ras, Protein Kinase C, and Protein Kinase A in neuronal cells. J. Biol. Chem. 278:4778–4785.

    Article  PubMed  Google Scholar 

  • Brachmann, C. B., and Cagan, R. L. (2003). Patterning the fly eye: The role of apoptosis. Trends Genet. 19:91–96.

    Article  PubMed  Google Scholar 

  • Breen, K. C., Bruce, M., and Anderton, B. H. (1991). Beta amyloid precursor protein mediates neuronal cell–cell and cell–surface adhesion. J. Neurosci. Res. 28:90–100.

    Article  PubMed  Google Scholar 

  • Brend, T., Gilthorpe, J., Summerbell, D., and Rigby, P. W. (2003). Multiple levels of transcriptional and post-transcriptional regulation are required to define the domain of Hoxb4 expression. Development 130:2717–2728.

    Article  PubMed  Google Scholar 

  • Bridges, C. B., and Dobzhansky, T. (1933). The mutant “proboscipedia” in Drosophila melanogaster—A case of hereditary homeosis. Willhelm Roux Arch Entwicklungsmech Org. 127:575–590.

    Article  Google Scholar 

  • Bridges, C. B., and Morgan, T. H. (1923). The third-chromosome group of mutant characters of Drosophila melanogaster, Vol. 327, Carnegie Institution of Washington Publication, The Lord Baltimore Press, Baltimore, MD, pp.1–251.

    Google Scholar 

  • Briscoe, J., Pierani, A., Jessel, T. M., and Ericson, J. (2000). A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445.

    Article  PubMed  Google Scholar 

  • Bromleigh, V. C., and Freedman, L. P. (2000). p21 is a transcriptional target of HOXA10 in differentiating myelomonocytic cells. Genes Dev. 14:2581–2586.

    Article  PubMed  Google Scholar 

  • Brooke, N. M., Garcia-Fernandez, J., and Holland, P. W. H. (1998). The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 392:920–922.

    Article  PubMed  Google Scholar 

  • Bryant, P. J., and Schmidt, O. (1990). The genetic control of cell proliferation in Drosophila imaginal discs. J. Cell Sci. 13(Suppl.):169–189.

    Google Scholar 

  • Bürglin, T. R. (1994). A comprehensive classification of homeobox genes. In: Duboule, D. (ed.), Guidebook to the Homeobox Genes, Oxford University Press, Oxford, UK, pp. 26–71.

    Google Scholar 

  • Bürglin, T. R. (1997). Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 25:4173–4180.

    Article  PubMed  Google Scholar 

  • Bürglin, T. R., and Cassata, G. (2002). Loss and gain of domains during evolution of cut superclass homeobox genes. Int. J. Dev. Biol. 46:115–123.

    PubMed  Google Scholar 

  • Carè, A., Silvani, A., Meccia, E., Mattia, G., Stoppacciaro, A., Parmiani, G., Peschle, C., and Colombo, M. P. (1996). HOXB7 constitutively activates basic fibroblast growth factor in melanomas. Mol. Cell. Biol. 16:4842–4851.

    PubMed  Google Scholar 

  • Carpenter, E. M. (2002). Hox genes and spinal cord development. Dev. Neurosci. 24:24–34.

    Article  PubMed  Google Scholar 

  • Castelli-Gair, J. (1998). Implications of the spatial and temporal regulation of Hox genes on development and evolution. Int. J. Dev. Biol. 42:437–444.

    PubMed  Google Scholar 

  • Catron, K. M., Iler, N., and Abate, C. (1993). Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol. Cell Biol. 13:2354–2365.

    PubMed  Google Scholar 

  • Chalepakis, G., Stoykova, A., Wijnholds, J., Tremblay, P., and Gruss, P. (1993). Pax: Gene regulators in the developing nervous system. J. Neurobiol. 24:1367–1384.

    Article  PubMed  Google Scholar 

  • Chalepakis, G., Tremblay, P., and Gruss, P. (1992). Pax genes, mutants and molecular function. J. Cell Sci. 16(Suppl.):61–67.

    Google Scholar 

  • Chan, S., and Mann, R. S. (1996). A structural model for a homeotic protein-extradenticle-DNA complex accounts for the choice of HOX protein in the heterodimer. Proc. Natl. Acad. Sci. U.S.A. 93:5223–5228.

    Article  PubMed  Google Scholar 

  • Chan, S., Pöpperl, H., Krumlauf, R., and Mann, R. S. (1996). An extradenticle-induced conformational change in a HOX protein overcomes an inhibitory function of the conserved hexapeptide motif. EMBO J. 15:2476–2487.

    PubMed  Google Scholar 

  • Chan, S., Ryoo, H., Gould, A., Krumlauf, R., and Mann, R. S. (1997). Switching the in vivo specificity of a minimal Hox-responsive element. Development 124:2007–2014.

    PubMed  Google Scholar 

  • Chang, C. P., Brocchieri, L., Shen, W. F., Largman, C., and Cleary, M. L. (1996). Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus. Mol. Cell. Biol. 16:1734–1745.

    PubMed  Google Scholar 

  • Chang, C. P., Shen, W. F., Rozenfeld, S., Lawrence, H. J., Largman, C., and Cleary, M. L. (1995). Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev. 9:663–674.

    PubMed  Google Scholar 

  • Chariot, A., Gielen, J., Merville, M., and Bours, V. (1999). The homeodomain-containing proteins: An update on their interacting partners. Biochem. Pharmacol. 58:1851–1857.

    Article  PubMed  Google Scholar 

  • Charite, J., de Graaff, W., Consten, D., Reijnen, M. J., Korving, J., and Deschamps, J. (1998). Transducing positional information to the Hox genes: Critical interaction of cdx gene products with position-sensitive regulatory elements. Development 125:4349–4358.

    PubMed  Google Scholar 

  • Chen, J., and Ruley, H. E. (1998). An enhancer element in the EphA2 (Eck) gene sufficient for rhombomere-specific expression is activated by HOXA1 and HOXB1 homeobox proteins. J. Biol. Chem. 273:24670–24675.

    Article  PubMed  Google Scholar 

  • Chen, S., Wang, Q. L., Nie, Z., Sun, H., Lennon, G., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., and Zack, D. J. (1997). Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19:1017–1030.

    Article  PubMed  Google Scholar 

  • Chuong, C. M. (1990). Adhesion molecules (N-CAM and tenascin) in embryonic development and tissue regeneration. J. Craniofac. Genet. Dev. Biol. 10:147–161.

    PubMed  Google Scholar 

  • Chuong, C. M., Oliver, G., Ting, S. A., Jegaliam, B. G., Chen, H. M., and De Robertis, E. M. (1990). Gradients of homeoproteins in developing feather buds. Development 110:1021–1030.

    PubMed  Google Scholar 

  • Cohen, D. R., Cheng, C. W., Cheng, S. H., and Hui, C. (2000). Expression of two novel mouse Iroquois homeobox genes during neurogenesis. Mech. Dev. 91:317–321.

    Article  PubMed  Google Scholar 

  • Conlon, R. A. (1995). Retinoic acid and pattern formation in vertebrates. Trends Genet. 11:314–319.

    Article  PubMed  Google Scholar 

  • Conlon, R. A., and Rossant, J. (1992). Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116:357–368.

    PubMed  Google Scholar 

  • Cook, S. J., Rubinfeld, B., Albert, I., and McCormick, F. (1993). RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12:3475–3485.

    PubMed  Google Scholar 

  • Copertino, D. W., Jenkinson, S., Jones, F. S., and Edelman, G. M. (1995). Structural and functional similarities between the promoters for mouse tenascin and chicken cytotactin. Proc. Natl. Acad. Sci. U.S.A. 92:2131–2135.

    PubMed  Google Scholar 

  • Coulier, F., Burtey, S., Chaffanet, M., Birg, F., and Birnbaum, D. (2000a). Ancestrally-duplicated paraHOX gene clusters in humans. Int. J. Oncol. 17:439–444.

    Google Scholar 

  • Coulier, F., Popovici, C., Villet, R., and Birnbaum, D. (2000b). MetaHox gene clusters. J. Exp. Zool. 288:345–351.

    Article  Google Scholar 

  • Coulthard, M. G., Duffy, S., Down, M., Evans, B., Power, M., Smith, F., Stylianou, C., Kleikamp, S., Oates, A., Lackmann, M., Burns, G. F., and Boyd, A. W. (2002). The role of the Eph-ephrin signalling system in the regulation of developmental patterning. Int. J. Dev. Biol. 46:375–384.

    PubMed  Google Scholar 

  • Creuzet, S., Couly, G., Vincent, C., and Le Douarin, N. M. (2002). Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 129:4301–4313.

    PubMed  Google Scholar 

  • Dailey, L., and Basilico, C. (2001). Coevolution of HMG domains and homeodomains and the generation of transcriptional regulation by Sox/POU complexes. J. Cell. Physiol. 186:315–328.

    Article  PubMed  Google Scholar 

  • Damante, G., Tell, G., and Di Lauro, R. (2001). A unique combination of transcription factors controls differentiation of thyroid cells. Prog. Nucleic Acid Res. Mol. Biol. 66:307–356.

    PubMed  Google Scholar 

  • Davenne, M., Maconochie, M. K., Neun, R., Pattyn, A., Chambon, P., Krumlauf, R., and Rijli, F. M. (1999). Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. Neuron 22:677–691.

    Article  PubMed  Google Scholar 

  • Dekker, E.-J., Pannese, M., Houtzager, E., Boncinelli, E., and Durston, A. (1992). Colinearity in the Xenopus laevis Hox-2 complex. Mech. Dev. 40:3–12.

    Article  Google Scholar 

  • Deschamps, J., van den Akker, E., Forlani, S., de Graaff, W., Oosterveen, T., Roelen, B., and Roelfsema, J. (1999). Initiation, establishment and maintenance of Hox gene expression patterns in the mouse. Int. J. Dev. Biol. 43:635–650.

    PubMed  Google Scholar 

  • Deschamps, J., and Wijgerde, M. (1993). Two phases in the establishment of HOX expression domains. Dev. Biol. 156:473–480.

    Article  PubMed  Google Scholar 

  • Di Rocco, G., Gavalas, A., Pöpperl, H., Krumlauf, R., Mavilio, F., and Zappavigna, V. (2001). The recruitment of SOX/OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto-regulatory enhancer function. J. Biol. Chem. 276:20506–20515.

    Article  PubMed  Google Scholar 

  • Di Rocco, G., Mavilio, F., and Zappavigna, V. (1997). Functional dissection of a transcriptionally active, target-specific Hox-Pbx complex. EMBO J. 16:3644–3654.

    Article  PubMed  Google Scholar 

  • Dodart, J. C., Mathis, C., and Ungerer, A. (2000). The beta-amyloid precursor protein and its derivatives: From biology to learning and memory processes. Rev. Neurosci. 11:75–93.

    PubMed  Google Scholar 

  • Dollé, P., Izpisua-Belmonte, J., Falkenstein, H., Renucci, A., and Duboule, D. (1989). Coordinate expression of the murine Hox-5 complex homeobox-containing genes during limb pattern formation. Nature 342:767–772.

    Article  PubMed  Google Scholar 

  • Dressler, G. R., and Gruss, P. (1989). Anterior boundaries of Hox gene expression in mesoderm-derived structures correlate with the linear gene order along the chromosome. Differentiation 41:193–201.

    PubMed  Google Scholar 

  • Drouin, J., Lamolet, B., Lamonerie, T., Lanctot, C., and Tremblay, J. J. (1998). The PTX family of homeodomain trascription factors during pituitary developments. Mol. Cell. Endocrinol. 140:31–36.

    Article  PubMed  Google Scholar 

  • Duboule, D. (1994a). Guidebook to the homeobox genes, Oxford University Press, New York.

    Google Scholar 

  • Duboule, D. (1994b). Temporal colinearity and the phylotypic progression: A basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development (Suppl.):135–142.

  • Duboule, D. (1998). Vertebrate Hox gene regulation: Clustering and/or colinearity? Curr Opin. Genet. Dev. 8:514–518.

    Article  PubMed  Google Scholar 

  • Duboule, D., and Dollé, P. (1989). The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J. 8:1497–1505.

    PubMed  Google Scholar 

  • Dupé, V., Davenne, M., Brocard, J., Dollé, P., Mark, M., Dierich, A., Chambon, P., and Rijli, F. M. (1997). In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′ RARE). Development 124:399–410.

    PubMed  Google Scholar 

  • Edelman, G. M., and Jones, F. S. (1993). Outside and downstream of the homeobox. J. Biol. Chem. 268:20683–20686.

    PubMed  Google Scholar 

  • Edelman, G. M., and Jones, F. S. (1995). Developmental control of N-CAM expression by Hox and Pax gene products. Philos. Trans. R. Soc. Lond. B Biol. Sci. 349:305–312.

    PubMed  Google Scholar 

  • Edelman, G. M., and Jones, F. S. (1998). Gene regulation of cell adhesion: A key step in neural morphogenesis. Brain Res. Rev. 26:337–352.

    Article  PubMed  Google Scholar 

  • Ekker, S. C., Jackson, D. G., von Kessler, D. P., Sun, B. I., Young, K. E., and Beachy, P. A. (1994). The degree of variation in DNA sequence recognition among four Drosophila homeotic proteins. EMBO J. 13:3551–3560.

    PubMed  Google Scholar 

  • Faiella, A., Zappavigna, V., Mavilio, F., and Boncinelli, E. (1994). Inhibition of retinoic acid-induced activation of 3′ human HOXB genes by antisense oligonucleotides affects sequential activation of genes located upstream in the four HOX clusters. Proc. Natl. Acad. Sci. U.S.A. 91:5335–5339.

    PubMed  Google Scholar 

  • Favier, B., and Dollé, P. (1997). Developmental functions of mammalian Hox genes. Mol. Hum. Reprod. 3:115–131.

    Article  PubMed  Google Scholar 

  • Ferretti, E., Marshall, H., Pöpperl, H., Maconochie, M., Krumlauf, R., and Blasi, F. (2000). Segmental expression of Hoxb2 in r4 requires two separate sites that integrate cooperative interactions between Prep1, Pbx and Hox proteins. Development 127:155–166.

    PubMed  Google Scholar 

  • Ferretti, E., Schulz, H., Talarico, D., Blasi, F., and Berthelsen, J. (1999). The PBX-regulating protein PREP1 is present in different PBX-complexed forms in mouse. Mech. Dev. 83:53–64.

    Article  PubMed  Google Scholar 

  • Ferrier, D. E., and Holland, P. W. (2001). Ancient origin of the Hox gene cluster. Nat. Rev. Genet. 2:33–38.

    Article  PubMed  Google Scholar 

  • Fognani, C., Kilstrup-Nielsen, C., Berthelsen, J., Ferretti, E., Zappavigna, V., and Blasi, F. (2002). Characterization of PREP2, a paralog of PREP1, which defines a novel sub-family of the MEINOX TALE homeodomain transcription factors. Nucleic Acids Res. 30:2043–2051.

    Article  PubMed  Google Scholar 

  • Frasch, M., Chen, X., and Lufkin, T. (1995). Evolutionary-conserved enhancers direct region-specific expression of the murine Hoxa-1 and Hoxa-2 loci in both mice and Drosophila. Development 121:957–974.

    PubMed  Google Scholar 

  • Fraser, S., Keynes, R., and Lumsden, A. (1990). Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435.

    Article  PubMed  Google Scholar 

  • Freund, J.-N., Domon-Dell, C., Kedinger, M., and Duluc, I. (1998). The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem. Cell Biol. 76:957–969.

    Article  PubMed  Google Scholar 

  • Friedman, R., and Hughes, A. L. (2001). Pattern and timing of gene duplication in animal genomes. Genome Res. 11:1842–1847.

    Article  PubMed  Google Scholar 

  • Friedman-Einat, M., Einat, P., Snyder, M., and Ruddle, F. (1996). Target gene identification: Target specific transcriptional activation by three murine homeodomain/VP16 hybrid proteins in Saccharomyces cerevisiae. J. Exp. Zool. 274:145–156.

    Article  PubMed  Google Scholar 

  • Gale, N. W., Holland, S. J., Valenzuela, D. M., Flenniken, A., Pan, L., Ryan, T. E., Henkemeyer, M., Strebhardt, K., Hirai, H., Wilkinson, D. G., Pawson, T., Davis, S., and Yancopoulos, G. D. (1996). Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17:9–19.

    Article  PubMed  Google Scholar 

  • Galliot, B., de Vargas, C., and Miller, D. (1999). Evolution of homeobox genes: Q50 paired-like genes founded the paired class. Dev. Genes Evol. 209:186–197.

    Article  PubMed  Google Scholar 

  • Ganzler, S. I., and Redies, C. (1995). R-cadherin expression during nucleus formation in chick forebrain neuromeres. J. Neurosci. 15:4157–4172.

    PubMed  Google Scholar 

  • Garcia-Bellido, A. (1975). Genetic control of wing disc development in Drosophila. Ciba Found. Symp. 0:161–182.

    Google Scholar 

  • Gauchat, D., Mazet, F., Berney, C., Schummer, M., Kreger, S., Pawlowski, J., and Galliot, B. (2000). Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning. Proc. Natl. Acad. Sci. U.S.A. 97:4493–4498.

    Article  PubMed  Google Scholar 

  • Gaunt, S. J. (1991). Expression patterns of mouse Hox genes: Clues to an understanding of developmental and evolutionary strategies. Bioessays 13:505–513.

    Article  PubMed  Google Scholar 

  • Gaunt, S. J., Coletta, P. L., Pravtcheva, D., and Sharpe, P. T. (1990). Mouse Hox-3.4: homeobox sequence and embryonic expression patterns compared with other members of the Hox gene network. Development 109:329–339.

    PubMed  Google Scholar 

  • Gaunt, S. J., Krumlauf, R., and Duboule, D. (1989). Mouse homeo-genes within a subfamily, Hox-1.4, -2.6, and -5.1, display similar anteroposterior domains of expression in the embryo, but show stage- and tissue-dependent differences in their regulation. Development 107:131–141.

    Google Scholar 

  • Gaunt, S. J., and Strachan, L. (1996). Temporal colinearity in expression of anterior Hox genes in developing chick embryos. Dev. Dyn. 207:270–280.

    Article  PubMed  Google Scholar 

  • Gavalas, A., Studer, M., Lumsden, A., Rijli, F. M., Krumlauf, R., and Chambon, P. (1998). Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125:1123–1136.

    PubMed  Google Scholar 

  • Geada, A. M. C., Gaunt, S. J., Azzawi, M., Shimeld, S. M., Pearce, J., and Sharpe, P. T. (1992). Sequence and embryonic expression of the murine Hox-3.5 gene. Development 116:497–506.

    PubMed  Google Scholar 

  • Gehring, W. J., Muller, M., Affolter, M., Percival-Smith, A., Billeter, M., Qian, Y. Q., Otting, G., and Wuthrich, K. (1990). The structure of the homeodomain and its functional implications. Trends Genet. 6:323–329.

    Article  PubMed  Google Scholar 

  • Gehring, W. J., Qian, Y. Q., Billeter, M., Furukubo-Tokunaga, K., Schier, A. F., Resendez-Perez, D., Affolter, M., Otting, G., and Wuthrich, K. (1994). Homeodomain-DNA recognition. Cell 78:211–223.

    Article  PubMed  Google Scholar 

  • Gellon, G., and McGinnis, W. (1998). Shaping animal body plans in development and evolution by modulation of Hox expression patterns. Bioessays 20:116–125.

    Article  PubMed  Google Scholar 

  • Gendron-Maguire, M., Mallo, M., Zhang, M., and Gridley, T. (1993). Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75:1317–1331.

    Article  PubMed  Google Scholar 

  • Gettins, P. G. (2002). Serpin structure, mechanism, and function. Chem. Rev. 102:4751–4804.

    Article  PubMed  Google Scholar 

  • Glavic, A., Gomez-Skarmeta, J. L., and Mayor, R. (2002). The homeoprotein Xiro1 is required for midbrain–hindbrain boundary formation. Development 129:1609–1621.

    PubMed  Google Scholar 

  • Glover, J. C. (2001). Correlated patterns of neuron differentiation and Hox gene expression in the hindbrain: A comparative analysis. Brain Res. Bull. 55:683–693.

    Article  PubMed  Google Scholar 

  • Gonzalez-Reyes, A., Urquia, M., Gehring, W., Struhl, G., and Morata, G. (1990). Are cross-regulatory interactions between homeotic gene functionally significant? Nature 334:78–80.

    Google Scholar 

  • Goodman, Y., and Mattson, M. P. (1994). Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp. Neurol. 128:1–12.

    Article  PubMed  Google Scholar 

  • Goomer, R. S., Holst, B. D., Wood, I. C., Jones, F. S., and Edelman, G. M. (1994). Regulation in vitro of an L-CAM enhancer by homeobox genes HoxD9 and HNF-1. Proc. Natl. Acad. Sci. U.S.A. 91:7985–7989.

    PubMed  Google Scholar 

  • Gould, A. (1997). Functions of mammalian Polycomb group and trithorax group related genes. Curr. Opin. Genet. Dev. 7:488–494.

    Article  PubMed  Google Scholar 

  • Gould, A., Morrison, A., Sproat, G., White, R. A., and Krumlauf, R. (1997). Positive cross-regulation and enhancer sharing: Two mechanisms for specifying overlapping Hox expression patterns. Genes Dev. 11:900–913.

    PubMed  Google Scholar 

  • Gould, A. P., Brookman, J. J., Strutt, D. I., and White, R. A. (1990). Targets of homeotic gene control in Drosophila. Nature 348:308–312.

    Article  PubMed  Google Scholar 

  • Graba, Y., Aragnol, D., and Pradel, J. (1997). Drosophila Hox complex downstream targets and the function of homeotic genes. Bioessays 19:379–388.

    Article  PubMed  Google Scholar 

  • Graham, A., Maden, M., and Krumlauf, R. (1991). The murine Hox-2 genes display dynamic dorsoventral patterns of expression during central nervous system development. Development 112:255–264.

    PubMed  Google Scholar 

  • Graham, A., Papalopulu, N., and Krumlauf, R. (1989). The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57:367–378.

    Article  PubMed  Google Scholar 

  • Graham, A., Papalopulu, N., Lorimer, J., McVey, J. H., Tuddenham, E. G., and Krumlauf, R. (1988). Characterization of a murine homeobox gene, Hox-2.6, related to the Drosophila deformed gene. Genes Dev. 2:1424–1438.

    PubMed  Google Scholar 

  • Grammatopoulos, G. A., Bell, E., Toole, L., Lumsden, A., and Tucker, A. S. (2000). Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 127:5355–5365.

    PubMed  Google Scholar 

  • Green, N. C., Rambaldi, I., Teakles, J., and Featherstone, M. S. (1998). A Conserved C-terminal Domain in PBX Increases DNA Binding by the PBX Homeodomain and is not a primary site of contact for the YPWM motif of HOXA1. J. Biol. Chem. 273:13273–13279.

    Article  PubMed  Google Scholar 

  • Greer, J. M., Puetz, J., Thomas, K. R., and Capecchi, M. R. (2000). Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403:661–665.

    Article  PubMed  Google Scholar 

  • Guazzi, S., Pintonello, M. L., Vigano, A., and Boncinelli, E. (1998). Regulatory interactions between the human HOXB1, HOXB2, and HOXB3 proteins and the upstream sequence of the Otx2 gene in embryonal carcinoma cells. J. Biol. Chem. 273:11092–11099.

    Article  PubMed  Google Scholar 

  • Guthrie, S., Prince, V., and Lumsden, A. (1993). Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 118:527–538.

    PubMed  Google Scholar 

  • Hao, Z., Yeung, J., Wolf, L., Doucette, R., and Nazarali, A. (1999). Differential expression of Hoxa-2 protein along the dorsal–ventral axis of the developing and adult mouse spinal cord. Dev. Dyn. 216:201–217.

    Article  PubMed  Google Scholar 

  • Hayashi, T., Huang, J., and Deeb, S. S. (2000). RINX(VSX1), a novel homeobox gene expressed in the inner nuclear layer of the adult retina. Genomics 67:128–139.

    Article  PubMed  Google Scholar 

  • Hoffman, B. J., Hansson, S. R., Mezey, E., and Palkovits, M. (1998). Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front. Neuroendocrinol. 19:187–231.

    Article  PubMed  Google Scholar 

  • Hogan, B. L. M., Holland, P. W. H., and Lumsden, A. (1988). Expression of the homeobox gene, Hox 2.1, during mouse embryogenesis. Cell Differ. Dev. 25(Suppl):39–44.

    Article  PubMed  Google Scholar 

  • Holland, P. W. H. (2001). Beyond the Hox: How widespread is homeobox gene clustering? J. Anat. 199:13–23.

    PubMed  Google Scholar 

  • Holland, P. W. H., and Hogan, B. L. M. (1988). Spatially restricted patterns of expression of the homeobox-containing gene Hox-2.1 during mouse embryogenesis. Development 102:159–174.

    PubMed  Google Scholar 

  • Holst, B. D., Goomer, R. S., Wood, I. C., Edelman, G. M., and Jones, F. S. (1994). Binding and activation of the promoter for the neural cell adhesion molecule by Pax-8. J. Biol.Chem. 269:22245–22252.

    PubMed  Google Scholar 

  • Hooiveld, M. H., Morgan, R., in der Rieden, P., Houtzager, E., Pannese, M., Damen, K., Boncinelli, E., and Durston, A. J. (1999). Novel interactions between vertebrate Hox genes. Int. J. Dev. Biol. 43:665–674.

    PubMed  Google Scholar 

  • Horan, G. S. B., Kovacs, E. N., Behringer, R. R., and Featherstone, M. S. (1995a). Mutations in paralogous Hox genes result in overlapping homeotic transformation of the axial skeleton: Evidence for unique and redundant function. Dev. Biol. 169:359–372.

    Article  Google Scholar 

  • Horan, G. S. B., Ramirez-Solis, R., Featherstone, M. S., Wolgemuth, D. J., Bradley, A., and Behringer, R. R. (1995b). Compound mutants for the paralogous Hoxa-4, Hoxb-4, and Hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrate transformed. Genes Dev. 9:1667–1677.

    Google Scholar 

  • Hostikka, S. L., and Capecchi, M. R. (1998). The mouse Hoxc11 gene: Genomic structure and expression pattern. Mech. Dev. 70:133–145.

    Article  PubMed  Google Scholar 

  • Hu, C. D., Kariya, K., Kotani, G., Shirouzu, M., Yokoyama, S., and Kataoka, T. (1997). Coassociation of Rap1A and Ha-Ras with Raf-1 N-terminal region interferes with ras-dependent activation of Raf-1. J. Biol. Chem. 272:11702–11705.

    Article  PubMed  Google Scholar 

  • Huang, D., Chen, S. W., and Gudas, L. J. (2002). Analysis of two distinct retinoic acid response elements in the homeobox gene Hoxb1 in transgenic mice. Dev. Dyn. 223:353–370.

    Article  PubMed  Google Scholar 

  • Hughes, A. L., da Silva, J., and Friedman, R. (2001). Ancient genome duplications did not structure the human Hox-bearing chromosomes. Genome Res. 11:771–780.

    Article  PubMed  Google Scholar 

  • Humbert, P., Russell, S., and Richardson, H. (2003). Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioessays 25:542–553.

    Article  PubMed  Google Scholar 

  • Hunt, P., Whiting, J., Muchamore, I., Marshall, H., and Krumlauf, R. (1991b). Homeobox genes and models for patterning the hindbrain and branchial arches. Dev. 1(Suppl.):187–196.

    Google Scholar 

  • Hunt, P., Whiting, J., Nonchev, S., Sham, M., Marshall, H., Graham, A., Cook, M., Alleman, R., Rigby, P. W. J., Gulisano, M., Faiella, A., Boncinelli, E., and Krumlauf, R. (1991a). The branchial Hox code and its implications for gene regulation, patterning of the nervous system and head evolution. Dev. 2(Suppl.):63–77.

    Google Scholar 

  • Hunter, M. P., and Prince, V. E. (2002). Zebrafish Hox paralogue group 2 genes function redundantly as selector genes to pattern the second pharyngeal arch. Dev. Biol. 247:367–389.

    Article  PubMed  Google Scholar 

  • Iademarco, M. F., McQuillan, J. J., and Dean, D. C. (1993). Vascular cell adhesion molecule 1: Contrasting transcriptional control mechanisms in muscle and endothelium. Proc. Natl. Acad. Sci. U.S.A. 90:3943–3947.

    PubMed  Google Scholar 

  • Inoue, T., Chisaka, O., Matsunami, H., and Takeichi, M. (1997). Cadherin-6 expression transiently delineates specific rhombomeres, other neural tube subdivisions, and neural crest subpopulations in mouse embryos. Dev. Biol. 183:183–194.

    Article  PubMed  Google Scholar 

  • Inoue, T., Tanaka, T., Takeichi, M., Chisaka, O., Nakamura, S., and Osumi, N. (2001). Role of cadherins in maintaining the compartment boundary between the cortex and striatum during development. Development 128:561–569.

    PubMed  Google Scholar 

  • Izon, D. J., Rozenfeld, S., Fong, S. T., Komuves, L., Largman, C., and Lawrence, H. J. (1998). Loss of function of the homeobox gene Hoxa-9 perturbs early T-cell development and induces apoptosis in primitive thymocytes. Blood 92:383–393.

    PubMed  Google Scholar 

  • Izpisua-Belmonte, J. C., Tickle, C., Dolle, P., Wolpert, L., and Duboule, D. (1991). Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature 350:585–589.

    Article  PubMed  Google Scholar 

  • Jabet, C., Gitti, R., Summers, M. F., and Wolberger, C. (1999). NMR studies of the Pbx1 TALE homeodomain protein free in solution and bound to DNA: Proposal for a mechanism of HoxB1-Pbx1-DNA complex assembly. J. Mol. Biol. 291:521–530.

    Article  PubMed  Google Scholar 

  • Jacobs, Y., Schnabel, C. A., and Cleary, M. L. (1999). Trimeric association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. Mol. Cell. Biol. 19:5134–5142.

    PubMed  Google Scholar 

  • Jagla, K., Bellard, M., and Frasch, M. (2001). A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. Bioessays. 23:125–133.

    Article  PubMed  Google Scholar 

  • Jagla, K., Stanceva, I., Dretzen, G., Bellard, F., and Bellard, M. (1994). A distinct class of homeodomain proteins is encoded by two sequentially expressed Drosophila genes from the 93D/E cluster. Nucleic Acids Res. 22:1202–1207.

    PubMed  Google Scholar 

  • Jaw, T. J., You, L.-R., Knoepfler, P. S., Yao, L.-C., Pai, C.-Y., Tang, C.-Y., Chang, L.-P., Berthelsen, J., Blasi, F., Kamps, M. P., and Sun, Y. H. (2000). Direct interaction of two homeoproteins, Homothorax and Extradenticle, is essential for EXD nuclear localization and function. Mech. Dev. 91:279–291.

    Article  PubMed  Google Scholar 

  • Jones, F. S., Chalepakis, G., Gruss, P., and Edelman, G. M. (1992a). Activation of the cytotactin promoter by the homeobox-containing gene Evx-1. Proc. Natl. Acad. Sci. U.S.A. 89:2091–2095.

    Google Scholar 

  • Jones, F. S., Holst, B. D., Minowa, O., De Robertis, E. M., and Edelman, G. M. (1993). Binding and transcriptional activation of the promoter for the neural cell adhesion molecule by HoxC6 (Hox-3.3). Proc. Natl. Acad. Sci. U.S.A. 90:6557–6561.

    PubMed  Google Scholar 

  • Jones, F. S., Kioussi, C., Copertino, D. W., Kallunki, P., Holst, B. D., and Edelman, G. M. (1997). Barx2, a new homeobox gene of the Bar class, is expressed in neural and craniofacial structures during development. Proc. Natl. Acad. Sci. U.S.A. 94:2632–2637.

    Article  PubMed  Google Scholar 

  • Jones, F. S., Meech, R., Edelman, D. B., Oakey, R. J., and Jones, P. L. (2001). Prx1 controls vascular smooth muscle cell proliferation and tenascin-C expression and is upregulated with Prx2 in pulmonary vascular disease. Circ. Res. 89:131–138.

    PubMed  Google Scholar 

  • Jones, F. S., Prediger, E. A., Bittner, D. A., De Robertis, E. M., and Edelman, G. M. (1992b). Cell adhesion molecules as targets for Hox genes: Neural cell adhesion molecule promoter activity is modulated by cotransfection with Hox-2.5 and -2. 4. Proc. Natl. Acad. Sci. U.S.A. 89:2086–2090.

    Google Scholar 

  • Juliano, R. L. (2002). Signal transduction by cell adhesion receptors and the cytoskeleton: Functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol. 42:283–323.

    Article  PubMed  Google Scholar 

  • Kalionis, B., and O’Farrell, P. H. (1993). A universal target sequence is bound in vitro by diverse homeodomains. Mech. Dev. 43:57–70.

    Article  PubMed  Google Scholar 

  • Kallunki, P., Jenkinson, S., Edelman, G. M., and Jones, F. S. (1995). Silencer elements modulate the expression of the gene for the neuron-glia cell adhesion molecule, Ng-CAM. J. Biol.Chem. 270:21291–21298.

    Article  PubMed  Google Scholar 

  • Kalmes, A., Merdes, G., Neumann, B., Strand, D., and Mechler, B. M. (1996). A serine-kinase associated with the p127-l(2)gl tumour suppressor of Drosophila may regulate the binding of p127 to nonmuscle myosin II heavy chain and the attachment of p127 to the plasma membrane. J. Cell Sci. 109:1359–1368.

    PubMed  Google Scholar 

  • Kammermeier, L., and Reichert, H. (2001). Common developmental genetic mechanisms for patterning invertebrate and vertebrate brains. Brain Res. Bull. 55:675–682.

    Article  PubMed  Google Scholar 

  • Kappen, C., Schughart, K., and Ruddle, F. H. (1989). Two steps in the evolution of Antennapedia-class vertebrate homeobox genes. Proc. Natl. Acad. Sci. U.S.A. 86:5459–5463.

    PubMed  Google Scholar 

  • Karunaratne, A., Hargrave, M., Poh, A., and Yamada, T. (2002). GATA proteins identify a novel ventral interneuron subclass in the developing chick spinal cord. Dev. Biol. 249:30–43.

    Article  PubMed  Google Scholar 

  • Kato, K., Kishi, T., Kamachi, T., Akisada, M., Oka, T., Midorikawa, R., Takio, K., Dohmae, N., Bird, P. I., Sun, J., Scott, F., Miyake, Y., Yamamoto, K., Machida, A., Tanaka, T., Matsumoto, K., Shibata, M., and Shiosaka, S. (2001). Serine proteinase inhibitor 3 and murinoglobulin I are potent inhibitors of neuropsin in adult mouse brain. J. Biol. Chem. 276:14562–14571.

    Article  PubMed  Google Scholar 

  • Kaufman, T. C., Seeger, M. A., and Olsen, G. (1990). Molecular and genetic organization of the Antennapedia gene complex of Drosophila melanogaster. Adv. Genet. 27:309–362.

    PubMed  Google Scholar 

  • Kehrer-Sawatzki, H., Wilda, M., Braun, V. M., Richter, H., and Hameister (2002). Mutation and expression analysis of the KRIT1 gene associated with cerebral cavernous malformations (CCM1). Acta Neuropathol. 104:231–240.

    PubMed  Google Scholar 

  • Keynes, R., and Krumlauf, R. (1994). Hox genes and regionalization of the nervous system. Annu. Rev. Neurosci. 17:109–132.

    Article  PubMed  Google Scholar 

  • Kim, C., Hwang, D., Park, J., and Kim, K. (2002). A proximal promoter domain containing a homeodomain-binding core motif interacts with multiple transcription factors, including HoxA5 and Phox2 proteins, and critically regulates cell type-specific transcription of the human norepinephrine transporter gene. J. Neurosci. 22:2579–2589.

    PubMed  Google Scholar 

  • Kim, Y., and Nirenberg, M. (1989). Drosophila NK-homeobox genes. Proc. Natl. Acad. Sci.U.S.A. 86:7716–7720.

    PubMed  Google Scholar 

  • King, M. W., Ndiema, M., and Neff, A. W. (1998). Anterior structural defects by misexpression of Xgbx-2 in early Xenopus embryos are associated with altered expression of cell adhesion molecules. Dev. Dyn. 212:563–579.

    Article  PubMed  Google Scholar 

  • Kiss, J. Z., and Muller, D. (2001). Contribution of the neural cell adhesion molecule to neuronal and synaptic plasticity. Rev. Neurosci 12:297–310.

    PubMed  Google Scholar 

  • Kmita, M., and Duboule, D. (2003). Organizing axes in time and space; 25 years of colinear tinkering. Science 301:331–333.

    Article  PubMed  Google Scholar 

  • Kmita, M., van der Hoeven, F., Zakany, J., Krumlauf, R., and Duboule, D. (2000). Mechanisms of Hox gene colinearity: Transposition of the anterior Hoxb1 gene into the posterior HoxD complex. Genes Dev. 14:198–211.

    PubMed  Google Scholar 

  • Knoepfler, P. S., and Kamps, M. P. (1995). The pentapeptide motif of Hox proteins is required for cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA binding by Pbx1. Mol. Cell. Biol. 15:5811–5819.

    PubMed  Google Scholar 

  • Knoepfler, P. S., Lu, Q., and Kamps, M. P. (1996). Pbx-1 Hox heterodimers bind DNA on inseparable half-sites that permit intrinsic DNA binding specificity of the Hox partner at nucleotides 3′ to a TAAT motif. Nucleic Acids Res. 24:2288–2294.

    Article  PubMed  Google Scholar 

  • Koizumi, K., Lintas, C., Nirenberg, M., Maeng, J., Ju, J., Mack, J. W., Gruschus, J. M., Odenwald, W. F., and Ferretti, J. A. (2003). Mutations that affect the ability of the vnd/NK-2 homeoprotein to regulate gene expression: Transgenic alterations and tertiary structure. Proc. Natl. Acad. Sci. U.S.A. 100:3119–3124.

    Article  PubMed  Google Scholar 

  • Komuves, L. G., Michael, E., Arbeit, J. M., Ma, X. K., Kwong, A., Stelnicki, E., Rozenfeld, S., Morimune, M., Yu, Q. C., and Largman, C. (2002). HOXB4 homeodomain protein is expressed in developing epidermis and skin disorders and modulates keratinocyte proliferation. Dev. Dyn. 224:58–68.

    Article  PubMed  Google Scholar 

  • Kornhauser, J. M., Leonard, M. W., Yamamoto, M., LaVail, J. H., Mayo, K. E., and Engel, J. D. (1994). Temporal and spatial changes in GATA transcription factor expression are coincident with development of the chicken optic tectum. Mol. Brain Res. 23:100–110.

    Article  PubMed  Google Scholar 

  • Kroon, E., Krosl, J., Thorsteinsdottir, U., Baban, S., Buchberg, A. M., and Sauvageau, G. (1998). Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 17:3714–3725.

    Article  PubMed  Google Scholar 

  • Krumlauf, R. (1991) The Hox gene family in transgenic mice. Curr. Opin. Biotechnol. 2:796–801.

    PubMed  Google Scholar 

  • Krumlauf, R. (1993). Hox genes and pattern formation in the branchial region of the vertebrate head. Trends Genet. 9:106–112.

    Article  PubMed  Google Scholar 

  • Krumlauf, R., and Gould, A. (1992). Homeobox cooperativity. Trends Genet. 8:297–300.

    Article  PubMed  Google Scholar 

  • Krumlauf, R., Marshall, H., Studer, M., Nonchev, S., Sham, M. H., and Lumsden, A. (1993). Hox homeobox genes and regionalisation of the nervous system. J. Neurobiol. 24:1328–1340.

    Article  PubMed  Google Scholar 

  • Kumar, P., and Nazarali, A. J. (2001). Characterization of Hoxd1 protein-DNA-binding specificity using affinity chromatography and random DNA oligomer selection. Cell. Mol. Neurobiol. 21:369–388.

    Article  PubMed  Google Scholar 

  • Kwan, C. T., Tsang, S. L., Krumlauf, R., and Sham, M. H. (2001). Regulatory analysis of the mouse Hoxb3 gene: Multiple elements work in concert to direct temporal and spatial patterns of expression. Dev. Biol. 232:176–190.

    Article  PubMed  Google Scholar 

  • Larhammer, D., Lundin, L., and Hallbook, F. (2002). The human Hox-bearing chromosome regions did arise by block or chromosome (or even genome) duplications. Genome Res. 12:1910–1920.

    Article  PubMed  Google Scholar 

  • Laughon, A. (1991). DNA binding specificity of homeodomains. Biochemistry 30:11357–11367.

    Article  PubMed  Google Scholar 

  • Lee, M.-Y., Choi, J.-S., Lim, S.-W., Cha, J.-H., Chun, M.-H., and Chung, J.-W. (2001). Expression of osteopontin mRNA in developing rat brainstem and cerebellum. Cell Tissue Res. 306:179–185.

    Article  PubMed  Google Scholar 

  • LeMosy, E. K., Hong, C. C., and Hashimoto, C. (1999). Signal transduction by a protease cascade. Trends Cell Biol. 9:102–107.

    Article  PubMed  Google Scholar 

  • Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. Nature 276:565–570.

    Google Scholar 

  • Li, X., Murre, C., and McGinnis, W. (1999b). Activity regulation of a Hox protein and a role for the homeodomain in inhibiting transcriptional activation. EMBO J. 18:198–211.

    Article  Google Scholar 

  • Li, X., Veraksa, A., and McGinnis, W. (1999a). A sequence motif distinct from Hox binding sites controls the specificity of a Hox response element. Development 126:5581–5589.

    Google Scholar 

  • Liaw, L., Birk, D. E., Ballas, C. B., Whitsitt, J. S., Davidson, J. M., and Hogan, B. L. (1998). Altered wound healing in mice lacking a functional osteopontin gene J. Clin. Invest. 101(Supp1):1468–1478.

    Google Scholar 

  • Liu, Y., MacDonald, R. J., and Swift, G. H. (2001). DNA binding and transcriptional activation by a PDX1.PBX1b.MEIS2b trimer and cooperation with a pancreas-specific basic helix-loop-helix complex. J. Biol. Chem. 276:17985–17993.

    Article  PubMed  Google Scholar 

  • Lohnes, D. (2003). The Cdx1 homeodomain protein: An integrator of posterior signaling in the mouse. Bioessays 25:971–980.

    Article  PubMed  Google Scholar 

  • Lu, Q., and Kamps, M. P. (1996). Structural determinants within Pbx1 that mediate cooperative DNA binding with pentapeptide-containing Hox proteins: Proposal for a model of a Pbx1-Hox-DNA complex. Mol. Cell. Biol. 16:1632–1640.

    PubMed  Google Scholar 

  • Lu, Q., and Kamps, M. P. (1997). Heterodimerization of Hox proteins with Pbx1 and oncoprotein E2a-Pbx1 generates unique DNA-binding specificities at nucleotides predicted to contact the N-terminal arm of the Hox homeodomain—demonstration of Hox-dependent targeting of E2a-Pbx1 in vivo. Oncogene 14:75–83.

    Article  PubMed  Google Scholar 

  • Lu, Q., Knoepfler, P. S., Scheele, J., Wright, D. D., and Kamps, M. P. (1995). Both Pbx1 and E2A-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine Hox genes, some of which are themselves oncogenes. Mol. Cell. Biol 15:3786–3795.

    PubMed  Google Scholar 

  • Lufkin, T. (1997). Transcriptional regulation of vertebrate Hox genes during embryogenesis. Crit. Rev. Eukaryot. Gene Expr. 7:195–213.

    PubMed  Google Scholar 

  • Luke, G. N., Castro, L. F. C., McLay, K., Bird, C., Coulson, A., and Holland, P. W. H. (2003). Dispersal of NK homeobox gene clusters in amphioxus and humans. Proc. Natl. Acad. Sci. U.S.A. 100:5292–5295.

    Article  PubMed  Google Scholar 

  • Lumsden, A. (1990). The cellular basis of segmentation in the developing hindbrain. Trends Neurosci. 13:329–339.

    Article  PubMed  Google Scholar 

  • Lumsden, A. (1999). Closing in on rhombomere boundaries. Nat. Cell Biol. 1:E83–E85.

    Article  PubMed  Google Scholar 

  • Lumsden, A., and Krumlauf, R. (1996). Patterning the vertebrate neuraxis. Science 274:1109–1115.

    Article  PubMed  Google Scholar 

  • Luo, Y., and Denker, B. M. (1999). Interaction of heterotrimeric G protein Gαo with Purkinje cell protein-2. Evidence for a novel nucleotide exchange factor. J. Biol. Chem. 274:10685–10688.

    Article  PubMed  Google Scholar 

  • Maconochie, M. K., Nonchev, S., Manzanares, M., Marshall, H., and Krumlauf, R. (2001). Differences in Krox20-dependent regulation of Hoxa2 and Hoxb2 during hindbrain development. Dev. Biol. 233:468–481.

    Article  PubMed  Google Scholar 

  • Maconochie, M. K., Nonchev, S., Studer, M., Chan, S. K., Pöpperl, H., Sham, M. H., Mann, R. S., and Krumlauf, R. (1997). Cross-regulation in the mouse HoxB complex: The expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev. 11:1885–1895.

    PubMed  Google Scholar 

  • Manfruelli, P., Arquier, N., Hanratty, W. P., and Semeriva, M. (1996). The tumor surpressor gene, lethal(2)giant larvae (l(2)gl), is required for cell shape change of epithelial cells during Drosophila development. Development 122:2283–2294.

    PubMed  Google Scholar 

  • Manley, N. R., and Capecchi, M. R. (1997). Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev. Biol. 192:274–288.

    Article  PubMed  Google Scholar 

  • Manley, N. R., and Capecchi, M. R. (1998). Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev. Biol. 195:1–15.

    Article  PubMed  Google Scholar 

  • Mann, R. S. (1995). The specificity of homeotic gene function. Bioessays 17:855–863.

    Article  PubMed  Google Scholar 

  • Mann, R. S., and Affolter, M. (1998). Hox proteins meet more partners. Curr. Opin. Genet. Dev. 8:423–429.

    Article  PubMed  Google Scholar 

  • Mannervik, M. (1999). Target genes of homeodomain proteins. Bioessays 21:267–270.

    Article  PubMed  Google Scholar 

  • Manzanares, M., Bel-Vialar, S., Ariza-McNaughton, L., Ferretti, E., Marshall, H., Maconochie, M. M., Blasi, F., and Krumlauf, R. (2001). Independent regulation of initiation and maintenance phases of Hoxa3 expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms. Development 128:3595–3607.

    PubMed  Google Scholar 

  • Manzanares, M., Cordes, S., Ariza-McNaughton, L., Sadl, V., Maruthainar, K., Barsh, G., and Krumlauf, R. (1999). Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 126:759–769.

    PubMed  Google Scholar 

  • Manzanares, M., Cordes, S., Kwan, C., Sham, M. H., Barsh, G. S., and Krumlauf, R. (1997). Segmental regulation of Hoxb-3 by kreisler. Nature 287:191–195.

    Article  Google Scholar 

  • Manzanares, M., Nardelli, J., Gilardi-Hebenstreit, P., Marshall, H., Guidicelli, F., Martinez-Pastor, M. T., Krumlauf, R., and Charnay, P. (2002). Krox20 and kreisler co-operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain. EMBO J. 21:365–376.

    Article  PubMed  Google Scholar 

  • Marks, N., and Berg, M. J. (1999). Recent advances on neuronal caspases in development and neurodegeneration. Neurochem. Int. 35:195–220.

    Article  PubMed  Google Scholar 

  • Marshall, H., Morrison, A., Studer, M., Pöpperl, H., and Krumlauf, R. (1996). Retinoids and Hox genes. FASEB J. 10:969–978.

    PubMed  Google Scholar 

  • Marshall, H., Studer, M., Pöpperl, H., Aparicio, S., Kuroiwa, A., Brenner, S., and Krumlauf, R. (1994). A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370:567–571.

    Article  PubMed  Google Scholar 

  • Martinez, P., and Amemiya, C. (2002). Genomics of the HOX gene cluster. Comp. Biochem. Physiol. B 133:571–580.

    Article  PubMed  Google Scholar 

  • Mastick, G. S., McKay, R., Oligino, T., Donovan, K., and Lopez, A. J. (1995). Identification of target genes regulated by homeotic proteins in Drosophila melanogaster through genetic selection of Ultrabithorax protein-binding sites in yeast. Genetics 139:349–363.

    PubMed  Google Scholar 

  • Matis, C., Chomez, P., Picard, J., and Rezsohazy, R. (2001). Differential and opposed transcriptional effects of protein fusions containing the VP16 activation domain. FEBS Lett. 499:92–96.

    Article  PubMed  Google Scholar 

  • Matsunami, H., and Takeichi, M. (1995). Fetal brain subdivisions defined by R- and E-cadherin expressions: Evidence for the role of cadherin activity in region-specific, cell–cell adhesion. Dev. Biol. 172:466–478.

    Article  PubMed  Google Scholar 

  • Mattson, M. P., and Furukawa, K. (1998). Signaling events regulating the neurodevelopmental triad. Glutamate and secreted forms of beta-amyloid precursor protein as examples. Perspect. Dev. Neurobiol. 5:337–352.

    PubMed  Google Scholar 

  • McFarlane, S. (2003). Metalloproteases: Carving out a role in axon guidance. Neuron 37:559–562.

    Article  PubMed  Google Scholar 

  • McGinnis, W., and Krumlauf, R. (1992). Homeobox genes and axial patterning. Cell 68:283–302.

    Article  PubMed  Google Scholar 

  • McGinnis, W., Levine, M., Hafen, E., Kuroiwa, A., and Gehring, W. J. (1984). A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308:428–433.

    Article  PubMed  Google Scholar 

  • McWhirter, J. R., Goulding, M., Weiner, J. A., Chun, J., and Murre, C. (1997). A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimera homeodomain oncoprotein E2A-Pbx1. Development 124:3221–3232

    PubMed  Google Scholar 

  • Meech, R., Kallunki, P., Edelman, G. M., and Jones, F. S. (1999). A binding site for homeodomain and Pax proteins is necessary for L1 cell adhesion molecule gene expression by Pax-6 and bone morphogenetic proteins. Proc. Natl. Acad. Sci. U.S.A. 96:2420–2425.

    Article  PubMed  Google Scholar 

  • Meier, B. C., Price, J. R., Parker, G. E., Bridwell, J. L., and Rhodes, S. J. (1999). Characterization of the porcine Lhx3/LIM-3/P-Lim LIM homeodomain transcription factor. Mol. Cell. Endocrinol. 147:65–74.

    Article  PubMed  Google Scholar 

  • Mellitzer, G., Xu, Q., and Wilkinson, D. G. (1999). Eph receptors and ephrins restrict cell intermingling and communication. Nature 400:77–81.

    Article  PubMed  Google Scholar 

  • Merabet, S., Kambris, Z., Capovilla, M., Berenger, H., Pradel, J., and Graba, Y. (2003). The hexapeptide and linker regions of the AbdA Hox protein regulate its activating and repressive functions. Dev. Cell 4:761–768.

    Article  PubMed  Google Scholar 

  • Mook-Jung, I., and Saitoh, T. (1997). Amyloid precursor protein activates phosphotyrosine signaling pathway. Neurosci. Lett. 235:1–4.

    Article  PubMed  Google Scholar 

  • Morrison, A., Ariza-McNaughton, L., Gould, A., Featherstone, M., and Krumlauf, R. (1997). HOXD4 and regulation of the group 4 paralog genes. Development 124:3135–3146.

    PubMed  Google Scholar 

  • Morsi El-Kadi, A. S., in der Reiden, P., Durston, A., and Morgan, R. (2002). The small GTPase Rap1 is an immediate downstream target for Hoxb4 transcriptional regulation. Mech. Dev. 113:131–139.

    Article  PubMed  Google Scholar 

  • Müller, M., Affolter, M., Leupin, W., Otting, G., Wuthrich, K., and Gehring, W. J. (1988). Isolation and sequence-specific DNA binding of the Antennapedia homeodomain. EMBO J. 7:4299–4304.

    PubMed  Google Scholar 

  • Müsch, A., Cohen, D., Yeaman, C., Nelson, W. J., Rodriguez-Boulan, E., and Brennwald, P. (2002). Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin–Darby canine kidney cells. Mol. Biol. Cell 13:158–168.

    Article  PubMed  Google Scholar 

  • Nardelli, J., Thiesson, D., Fujiwara, Y., Tsai, F. Y., and Orkin, S. H. (1999). Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev. Biol. 210:305–321.

    Article  PubMed  Google Scholar 

  • Nasiadka, A., Grill, A., and Krause, H. M. (2000). Mechanisms regulating target gene selection by the homeodomaim-containing Fushi tarazu. Development 127:2965–2976.

    PubMed  Google Scholar 

  • Natochin, M., Gasimov, K. G., and Artemyev, N. O. (2001). Inhibition of GDP/GTP exchange on G alpha subunits by proteins containing G-protein regulatory motifs. Biochemistry 40:5322–5328.

    PubMed  Google Scholar 

  • Neuteboom, S. T. C., and Murre, C. (1997). Pbx raised the binding specificity but not the selectivity of Antennapedia Hox proteins. Mol. Cell. Biol. 17:4696–4706.

    PubMed  Google Scholar 

  • Neuteboom, S. T. C., Peltenburg, L. T. C., van Dijk, M. A., and Murre, C. (1995). The hexapeptide LFPWMR in Hoxb-8 is required for cooperative DNA binding with Pbx1 and Pbx2 proteins. Proc. Natl. Acad. Sci. U.S.A. 92:9166–9170.

    Google Scholar 

  • Neves, S. R., Ram, P. T., and Iyengar, R. (2002). G protein pathways. Science 296:1636–1639.

    Article  PubMed  Google Scholar 

  • Nishimura, I., Takazaki, R., Kuwako, K., Enokido, Y., and Yoshikawa, K. (2003). Upregulation and antiapoptotic role of endogenous Alzheimer amyloid precursor protein in dorsal root ganglion neurons. Exp. Cell Res. 286:241–251.

    Article  PubMed  Google Scholar 

  • Nittenberg, R., Patel, K., Joshi, Y., Krumlauf, R., Wilkinson, D. G., Brickell, P. M., Tickle, C., and Clarke, J. D. W. (1997). Cell movements, neuronal organisation and gene expression in hindbrains lacking morphological boundaries. Development 124:2297–2306.

    PubMed  Google Scholar 

  • Nolte, C., Amores, A., Kovács, E. N., Postlethwait, J., and Featherstone, M. (2003). The role of retinoic acid response element in establishing the anterior neural expression border of Hoxd4 transgenes. Mech. Dev. 120:325–335.

    Article  PubMed  Google Scholar 

  • Nonchev, S., Maconochie, M., Vesque, C., Aparicio, S., Ariza-McNaughton, L., Manzanares, M., Maruthainar, K., Kuroiwa, A., Brenner, S., Charnay, P., and Krumlauf, R. (1996a). The conserved role of Krox-20 in directing Hox gene expression during vertebrate hindbrain segmentation. Proc. Natl. Acad. Sci. U.S.A. 93:9339–9345.

    Article  Google Scholar 

  • Nonchev, S., Vesque, C., Maconochie, M., Seitanidou, T., Ariza-McNaughton, L., Frain, M., Marshall, H., Sham, M. H., Krumlauf, R., and Charnay, P. (1996b). Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 122:543–554.

    Google Scholar 

  • Norris, R. A., and Kern, M. J. (2001). Identification of domains mediating transcription activation, repression, and inhibition in the paired-related homeobox protein, prx2 (S8). DNA Cell Biol. 20:89–99.

    Article  PubMed  Google Scholar 

  • Nowling, T., Zhou, W., Krieger, K. E., Larochelle, C., Nguyen-Huu, M. C., Jeannotte, L., and Tuggle, C. K. (1999). Hoxa5 gene regulation: A gradient of binding activity to a brachial spinal cord element. Dev. Biol. 208:134–146.

    Article  PubMed  Google Scholar 

  • Oberdick, J., Schilling, K., Smeyne, R. J., Corbin, J. G., Bocchiaro, C., and Morgan, J. I. (1993). Control of segment-like patterns of gene expression in the mouse cerebellum. Neuron 10:1007–1018.

    Article  PubMed  Google Scholar 

  • Ohba, Y., Ikuta, K., Ogura, A., Matsuda, J., Mochizuki, N., Nagashima, K., Kurokawa, K., Mayer, B. J., Make, K., Miyazaki, J., and Matsuda, M. (2001). Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J. 20:3333–3341.

    Article  PubMed  Google Scholar 

  • Oldberg, A., Franzen, A., and Heinegard, D. (1986). Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc. Natl. Acad. Sci U.S.A. 83:8819–8823.

    PubMed  Google Scholar 

  • Oosterveen, T., Niederreither, K., Dolle, P., Chambon, P., Meijlink, F., and Deschamps, J. (2003). Retinoids regulate the anterior expression boundaries of 5′ Hoxb genes in posterior hindbrain. EMBO J. 22:262–269.

    Article  PubMed  Google Scholar 

  • Ouweneel, W. J. (1976). Developmental Genetics of Homoeosis. Adv. Genet. 18:179–248.

    PubMed  Google Scholar 

  • Owens, B. M., and Hawley, R. G. (2002). HOX and Non-HOX homeobox genes in leukemic hematopoiesis. Stem Cell 20:364–379.

    Article  Google Scholar 

  • Pabo, C. O., and Sauer, R. T. (1992). Transcription factors: Structural families and principles of DNA recognition. Annu. Rev. Biochem. 61:1053–1095.

    Article  PubMed  Google Scholar 

  • Packer, A. I., Crotty, D. A., Elwell, V. A., and Wolgemuth, D. J. (1998). Expression of the murine Hoxa4 gene requires both autoregulation and a conserved retinoic acid response element. Development 125:1991–1998.

    PubMed  Google Scholar 

  • Panegyres, P. K. (2001). The functions of the amyloid precursor protein gene. Rev. Neurosci. 12:1–39.

    PubMed  Google Scholar 

  • Panganiban, G., and Rubenstein, J. L. R. (2002). Developmental functions of the Distal-less/Dlx homeobox genes. Development 129:4371–4386.

    PubMed  Google Scholar 

  • Papalopulu, N., Lovell-Badge, R., and Krumlauf, R. (1991). The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays a collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos. Nucleic Acids Res. 19:5497–5506.

    PubMed  Google Scholar 

  • Pasqualetti, M., Ori, M., Nardi, I., and Rijli, F. M. (2000). Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development 127:5367–5378.

    PubMed  Google Scholar 

  • Pasqualetti, M., and Rijli, F. M. (2001). Homeobox gene mutations and brain-stem developmental disorders: Learning from knockout mice. Curr. Opin. Neurol. 14:177–184.

    Article  PubMed  Google Scholar 

  • Pata, I., Studer, M., van Doorninck, J. H., Briscoe, J., Kuuse, S., Engel, J. D., Grosveld, F., and Karis, A. (1999). The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4. Development 126:5523–5531.

    PubMed  Google Scholar 

  • Patel, N. H., and Prince, V. E. (2000). Beyond the Hox complex. Genome Biol. 1:10271–10274.[Reviews]

    Article  Google Scholar 

  • Pattyn, A., Vallstedt, A., Dias, J. M., Samad, O. A., Krumlauf, R., Rijli, F. M., Brunet, J., and Ericson, J. (2003). Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev. 17:729–737.

    Article  PubMed  Google Scholar 

  • Peifer, M., and Wieschaus, E. (1990). Mutations in the Drosophila gene extradenticle affect the way specific homeo domain proteins regulate segmental identity. Genes Dev. 4:1209–1223.

    PubMed  Google Scholar 

  • Pellerin, I., Schnabel, C., Catron, K. M., and Abate, C. (1994). Hox proteins have different affinities for a consensus DNA site that correlate with the positions of their genes on the Hox cluster. Mol. Cell. Biol. 14:4532–4545.

    PubMed  Google Scholar 

  • Peltenburg, L. T., and Murre, C. (1997). Specific residues in the Pbx homeodomain differentially modulate the DNA-binding activity of Hox and Engrailed proteins. Development 124:1089–1098.

    PubMed  Google Scholar 

  • Perez, R. G., Zheng, H., Van der Ploeg, L. H. T., and Koo, E. H. (1997). The beta-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J. Neurosci. 17:9407–9414.

    PubMed  Google Scholar 

  • Peterson, R. L., Papenbrock, T., Davda, M. M., and Awgulewitsch, A. (1994). The murine Hoxc cluster contains five neighboring AbdB-related Hox genes that show unique spatially coordinated expression in posterior embryonic subregions. Mech. Dev. 47:253–260.

    Article  PubMed  Google Scholar 

  • Phelan, M. L., and Featherstone, M. S. (1997). Distinct HOX N-terminal arm residues are responsible for specificity of DNA recognition by HOX monomers and HOX. PBX heterodimers. J. Biol. Chem. 272:8635–8643.

    Article  PubMed  Google Scholar 

  • Phelan, M. L., Rambaldi, E., and Featherstone, M. S. (1995). Cooperative interactions between HOX and PBX proteins mediated by a conserved peptide motif. Mol. Cell Biol. 15:3989–3997.

    PubMed  Google Scholar 

  • Piper, D. E., Batchelor, A. H., Chang, C., Cleary, M. L., and Wolberger, C. (1999). Structure of a HoxB1-Pbx hetrodimer bound to DNA: Role of the hexapeptide and a fourth homeodomain helix in complex formation. Cell 96:587–597.

    Article  PubMed  Google Scholar 

  • Plant, P. J., Fawcett, J. P., Lin, D. C., Holdorf, A. D., Binns, K., Kulkarni, S., and Pawson, T. (2003). A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat. Cell Biol. 5:301–308.

    Article  PubMed  Google Scholar 

  • Pollard, S. L., and Holland, P. W. H. (2000). Evidence for 14 homeobox gene clusters in human genome ancestry. Curr. Biol. 10:1059–1062.

    Article  PubMed  Google Scholar 

  • Popovici, C., Leveugle, M., Birnbaum, D., and Coulier, F. (2001). Homeobox gene clusters and the human paralogy map. FEBS Lett. 491:237–242.

    Article  PubMed  Google Scholar 

  • Pöpperl, H., Bienz, M., Studer, M., Chan, S. K., Aparicio, S., Brenner, S., Mann, R. S. and Krumlauf, R. (1995). Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81:1031–1042.

    Article  PubMed  Google Scholar 

  • Pöpperl, H., and Featherstone, M. S. (1992). An autoregulatory element of the murine Hox-4.2 gene. EMBO J. 11:3673–3680.

    PubMed  Google Scholar 

  • Pradel, J., and White, R. A. (1998). From selectors to realizators. Int. J. Dev. Biol. 42:417–421.

    PubMed  Google Scholar 

  • Prince, V., and Lumsden, A. (1994). Hoxa-2 expression in normal and transposed rhombomeres: Independent regulation in the neural tube and neural crest. Development 120:911–923.

    PubMed  Google Scholar 

  • Prince, V. E. (2002). The Hox Paradox: More complex(es) than imagined. Dev. Biol. 249:1–15.

    Article  PubMed  Google Scholar 

  • Qian, Y. Q., Billeter, M., Otting, G., Müller, M., Gehring, W. J., and Wuthrich, K. (1989). The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: Comparison with prokaryotic repressors. Cell 59:573–580.

    Article  PubMed  Google Scholar 

  • Quaggin, S. E., Vanden Heuvel, G. B., Golden, K., Bodmer, R., and Igarashi, P. (1996). Primary structure, neural-specific expression, and chromosomal localization of Cux-2, a second murine homeobox gene related to Drosophila cut. J. Biol. Chem. 271:22624–22634.

    Article  PubMed  Google Scholar 

  • Quentien, M., Pitoia, F., Gunz, G., Guillet, M., Enjalbert, A., and Pellegrini, I. (2002). Regulation of prolactin, GH, and Pit-1 gene expression in anterior pituitary by Pitx2: An approach using Pitx2 mutants. Endocrinology 143:2839–2851.

    Article  PubMed  Google Scholar 

  • Rausa, R., Samadani, U., Ye, H., Lim, L., Fletcher, C. F., Jenkins, N. A., Copeland, N. G., and Costa, R. H. (1997). The cut-homeodomain transcriptional activator HNF-6 is coexpressed with its target gene HNF-3 beta in the developing murine liver and pancreas. Dev. Biol. 192:228–246.

    Article  PubMed  Google Scholar 

  • Rauskolb, C., and Wieschaus, E. (1994). Coordinate regulation of downstream genes by extradenticle and the homeotic selector proteins. EMBO J. 13:3561–3569.

    PubMed  Google Scholar 

  • Redd, K. J., Oberdick, J., McCoy, J., Denker, B. M., and Luo, Y. (2002). Association and colocalization of G protein α subunits and Purkinje cell protein 2 (Pcp2) in mammalian cerebellum. J. Neurosci. Res. 70:631–637.

    Article  PubMed  Google Scholar 

  • Redies, C. (1995). Cadherin expression in the developing vertebrate CNS: From neuromeres to brain nuclei and neural circuits. Exp. Cell Res. 220:243–256.

    Article  PubMed  Google Scholar 

  • Redies, C. (2000). Cadherins in the central nervous system. Prog. Neurobiol. 61:611–648.

    Article  PubMed  Google Scholar 

  • Remacle, S., Shaw-Jackson, C., Matis, C., Lampe, X., Picard, J., and Rezsohazy, R. (2002). Changing homeodomain residues 2 and 3 of Hoxa1 alters its activity in a cell-type and enhancer dependent manner. Nucleic Acids Res. 30:2663–2668.

    Article  PubMed  Google Scholar 

  • Ren, S. Y., Angrand, P. O., and Rijli, F. M. (2002). Targeted insertion results in a rhombomere 2-specific Hoxa2 knockdown and ectopic activation of Hoxa1 expression. Dev. Dyn. 225:305–315.

    Article  PubMed  Google Scholar 

  • Renn, Z. G., Porzgen, P., Zhang, J. M., Chen, X. R., Amara, S. G., Blakely, R. D., and Sieber-Blum, M. (2001). Autocrine regulation of norepinephrine transporter expression. Mol. Cell. Neurosci. 17:539–550.

    Article  PubMed  Google Scholar 

  • Rhinn, M., Dierich, A., Le Meur, M., and Ang, S.-L. (1999). Cell autonomous and non-cell autonomous functions of Otx2 in patterning the rostral brain. Development 126:4295–4304.

    PubMed  Google Scholar 

  • Rijli, F. M., Gavalas, A., and Chambon, P. (1998). Segmentation and specification in the brachial region of the head: The role of the Hox selector genes. Int. J. Dev. Biol. 42:393–401.

    PubMed  Google Scholar 

  • Rijli, F. M., Mark, M., Lakkaraju, S., Dierich, A., Dolle, P., and Chambon, P. (1993). A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75:1333–1349.

    Article  PubMed  Google Scholar 

  • Ronn, L. C. B., Hartz, B. P., and Bock, E. (1998). The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp. Gerontol. 33:853–864.

    Article  PubMed  Google Scholar 

  • Rossel, M., and Capecchi, M. R. (1999). Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126:5027–5040.

    PubMed  Google Scholar 

  • Rubenstein, J. L., and Puelles, L. (1994). Homeobox gene expression during development of the vertebrate brain. Curr. Top. Dev. Biol. 29:1–63.

    PubMed  Google Scholar 

  • Russo, C., Dolcini, V., Salis, S., Venezia, V., Zambrano, N., Russo, T., and Schettini, G. (2002). Signal transduction through tyrosine-phosphorylated C-terminal fragments of amyloid precursor protein via an enhanced interaction with Shc/Grb2 adaptor proteins in reactive astrocytes of Alzheimer’s disease brain. J. Biol. Chem. 277:35282–35288.

    Article  PubMed  Google Scholar 

  • Ryoo, H. D., and Mann, R. S. (1999). The control of trunk Hox specificity and activity by Extradenticle. Genes Dev. 13:1704–1716.

    PubMed  Google Scholar 

  • Safaei, R. (1997). A target of the HoxB5 gene from the mouse nervous system. Dev. Brain Res. 100:5–12.

    Article  Google Scholar 

  • Sakach, M., and Safaei, R. (1996). Localization of the HoxB5 protein in the developing CNS of late gestational mouse embryos. Int. J. Dev. Neurosci. 14:567–573.

    PubMed  Google Scholar 

  • Saleh, M., Rambaldi, I., Yang, X. J., and Featherstone, M. S. (2000). Cell signaling switches HOX-PBX complexes from repressors to activators of transcription mediated by histone deacetylases and histone acetyltransferases. Mol. Cell. Biol. 20:8623–8633.

    Article  PubMed  Google Scholar 

  • Sanlioglu, S., Zhang, X., Baader, S. L., and Oberdick, J. (1998). Regulation of a Purkinje cell-specific promoter by homeodomain proteins: Repression by engrailed-2 vs. synergistic activation by Hoxa5 and Hoxb7. J. Neurobiol. 36:559–571.

    Article  PubMed  Google Scholar 

  • Sanlioglu-Crisman, S., and Oberdick, J. (1997). Functional cloning of candidate genes that regulate Purkinje cell-specific gene expression. Prog. Brain Res. 114:3–19.

    PubMed  Google Scholar 

  • Santagati, F., and Rijli, F. M. (2003). Cranial neural crest and the building of the vertebrate head. Nat. Genet. 4:806–818.

    Google Scholar 

  • Schöck, F., Reischl, J., Wimmer, E., Taubert, H., Purnell, B. A., and Jäckle, H. (2000). Phenotypic suppression of empty spiracles is prevented by buttonhead. Nature 405:351–354.

    Article  PubMed  Google Scholar 

  • Schubert, D., Jin, L. W., Saitoh, T., and Cole, G. (1989). The regulation of amyloid beta protein precursor secretion and its modulatory role in cell adhesion. Neuron 3:689–694.

    Article  PubMed  Google Scholar 

  • Schumacher, A., and Magnuson, T. (1997). Murine Polycomb- and trithorax-group genes regulate homeotic pathways and beyond. Trends Genet. 13:167–170.

    Article  Google Scholar 

  • Schwachtgen, J.-L., Remacle, J. E., Janel, N., Brys, R., Huylebroeck, D., Meyer, D., and Kerbiriou-Nabias, D. (1998). Oct-1 is involved in the transcriptional repression of the von Willebrand Factor gene promoter. Blood 92:1247–1258.

    PubMed  Google Scholar 

  • Scott, M. P., and Weiner, A. J. (1984). Structural relationships among genes that control development: Sequence homology between the Antennapedia, Ultrabithorax and fushi tarazu loci of Drosophila. Proc. Natl. Acad. Sci. U.S.A. 81:4115–4119.

    PubMed  Google Scholar 

  • Scott, M. P., Weiner, A. J., Hazelrigg, T. I., Polisky, B. A., Pirrotta, V., Scalenghe, F., and Kaufman, T. C. (1983). The molecular organization of the Antennapedia locus of Drosophila. Cell 35:763–776.

    Article  PubMed  Google Scholar 

  • Searcy, R. D., Vincent, E. B., Liberatore, C. M., and Yutzey, K. E. (1998). A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development 125:4461–4470.

    PubMed  Google Scholar 

  • Seidah, N. G., and Chretien, M. (1997). Eukaryotic protein processing: Endoproteolysis of precursor proteins. Curr. Opin. Biotechnol. 8:602–607.

    Article  PubMed  Google Scholar 

  • Seitanidou, T., Schneider-Maunoury, S., Desmarquet, C., Wilkinson, D. G., and Charnay, P. (1997). Krox-20 is a key regulator of rhombomere-specific gene expression in the developing hindbrain. Mech. Dev. 65:31–42.

    Article  PubMed  Google Scholar 

  • Sellar, G. C., Li, L., Watt, K. P., Nelkin, B. D., Rabiasz, G. J., Stronach, E. A., Miller, E. P., Porteous, D. J., Smyth, J. F., and Gabra, H. (2001). BARX2 induces Cadherin 6 expression and is a functional suppressor of ovarian cancer progression. Cancer Res. 61:6977–6981.

    PubMed  Google Scholar 

  • Sham, M. H., Hunt, P., Nonchev, S., Papalopulu, N., Graham, A., Boncinelli, E., and Krumlauf, R. (1992). Analysis of the murine Hox-2.7 gene: Conserved alternative transcripts with differential distributions in the nervous system and the potential for shared regulatory regions. EMBO J. 11:1825–1836.

    PubMed  Google Scholar 

  • Sham, M. H., Vesque, C., Nonchev, S., Marshall, H., Frain, M., Gupta, R. D., Whiting, J., Wilkinson, D., Charnay, P., and Krumlauf, R. (1993). The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. Cell 72:183–196.

    Article  PubMed  Google Scholar 

  • Shanmugam, K., Featherstone, M. S., and Saragovi, H. U. (1997). Residues flanking the HOX YPWM motif contribute to cooperative interactions with PBX. J. Biol. Chem. 272:19081–19087.

    Article  PubMed  Google Scholar 

  • Shanmugam, K., Green, N. C., Rambaldi, I., Saragovi, H. U., and Featherstone, M. S. (1999). PBX and MEIS as non-DNA-binding partners in trimeric complexes with HOX proteins. Mol. Cell Biol. 19:7577–7588.

    PubMed  Google Scholar 

  • Sharpe, J., Nonchev, S., Gould, A., Whiting, J., and Krumlauf, R. (1998). Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO J. 17:1788–1798.

    Article  PubMed  Google Scholar 

  • Shen, J., Wu, H., and Gudas, L. J. (2000). Molecular cloning and analysis of a group of genes differentially expressed in cells which overexpress the Hoxa-1 homeobox gene. Exp. Cell Res. 259:274–283.

    Article  PubMed  Google Scholar 

  • Shen, W. F., Chang, C. P., Rozenfeld, S., Sauvageau, G., Humphries, R. K., Lu, M., Lawrence, H. J., Cleary, M. L., and Largman, C. (1996). Hox homeodomain proteins exhibit selective complex stabilities with Pbx and DNA. Nucleic Acids Res. 24:898–906.

    Article  PubMed  Google Scholar 

  • Shen, W.-F., Krishnan, K., Lawrence, H. J., and Largman, C. (2001). The HOX homeodomain proteins block CBP histone acetyltransferase activity. Mol. Cell Biol. 21:7509–7522.

    Article  PubMed  Google Scholar 

  • Shen, W. F., Montgomery, J. C., Rozenfeld, S., Moskow, J. J., Lawrence, H. J., Buchberg, A. M., and Largman, C. (1997). AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol. Cell Biol. 17:6448–6458.

    PubMed  Google Scholar 

  • Shen, W. F., Rozenfeld, S., Kwong, A., Kom ves, L. G., Lawrence, H. J., and Largman, C. (1999). HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol. Cell Biol. 19:3051–3061.

    PubMed  Google Scholar 

  • Shi, X., Bai, S., Li, L., and Cao, X. (2001). Hoxa-9 represses transforming growth factor-β-induced osteopontin gene transcription. J. Biol. Chem. 276:850–855.

    Article  PubMed  Google Scholar 

  • Shi, X., Yang, X., Chen, D., Chang, Z., and Cao, X. (1999). Smad1 interacts with homeobox DNA-binding proteins in bone morphogenetic protein signaling. J. Biol. Chem. 274:13711–13717.

    Article  PubMed  Google Scholar 

  • Sidow, A. (1996). Gen(om)e duplications in the evolution of early vertebrates. Curr. Opin. Genet. Dev. 6:715–722.

    Article  PubMed  Google Scholar 

  • Sieber-Blum, M., and Ren, Z. (2000). Norepinephrine transporter expression and function in noradrenergic cell differentiation. Mol. Cell Biochem. 212:61–70.

    Article  PubMed  Google Scholar 

  • Simeone, A., and Acampora, D. (2001). The role of Otx2 in organizing the anterior patterning in mouse. Int. J. Dev. Biol. 45:337–345.

    PubMed  Google Scholar 

  • Simeone, A., Acampora, D., Arcioni, L., Andrews, P. W., Boncinelli, E., and Mavilio, F. (1990). Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346:763–766.

    Article  PubMed  Google Scholar 

  • Simeone, A., Acampora, D., Nigro, V., Faiella, A., D’Esposito, M., Stornaiuolo, A., Mavilio, F., and Boncinelli, E. (1991). Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells. Mech. Dev. 33:215–227.

    Article  PubMed  Google Scholar 

  • Simeone, A., Avantaggiato, V., Moroni, M. C., Mavilio, F., Arra, C., Cotelli, F., Nigro, V., and Acampora, D. (1995). Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mech. Dev. 51:83–98.

    Article  PubMed  Google Scholar 

  • Simpson, T. I., and Price, D. J. (2002). Pax6; a pleiotropic player in development. Bioessays 24:1041–1051.

    Article  PubMed  Google Scholar 

  • Sloop, K. W., Parker, G. E., Hanna, K. R., Wright, H. A., and Rhodes, S. J. (2001). LHX3 transcription factor mutations associated with combined pituitary hormone deficiency impair the activation of pituitary target genes. Gene 265:61–69.

    Article  PubMed  Google Scholar 

  • Slupsky, C. M., Sykes, D. B., Gay, G. L., and Sykes, B. D. (2001). The HoxB1 hexapeptide is a prefolded domain: Implications for the Pbx1/Hox interaction. Protein Sci. 10:1244–1253.

    Article  PubMed  Google Scholar 

  • Smirnova, I. V. Ho, G. J., Fenton, J. W., II, and Festoff, B. W. (1994). Extravascular proteolysis and the nervous system: Serine protease/serpin balance. Semin. Thromb. Hemost. 20:426–432.

    PubMed  Google Scholar 

  • Sorkin, B. C., Jones, F. S., Cunningham, B. A., and Edelman, G. M. (1993). Identification of the promoter and a transcriptional enhancer of the gene encoding L-CAM, a calcium-dependent cell adhesion molecule. Proc. Natl. Acad. Sci. U.S.A. 90:11356–11360.

    PubMed  Google Scholar 

  • Spirov, A. V., Borovsky, M., and Spirova, O. A. (2002). HOX Pro DB: The functional genomics of Hox ensembles. Nucleic Acids Res. 30:351–353.

    Article  PubMed  Google Scholar 

  • Sprules, T., Green, N., Featherstone, M., and Gehring, K. (2000). Conformational changes in the PBX homeodomain and C-terminal extension upon binding DNA and HOX-derived YPWM peptides. Biochemistry 39:9943–9950.

    Article  PubMed  Google Scholar 

  • Sprules, T., Green, N., Featherstone, M., and Gehring, K. (2003). Lock and key binding of the HOX YPWM peptide to the PBX homeodomain. J. Biol. Chem. 278:1053–1058.

    Article  PubMed  Google Scholar 

  • St.-Jacques, B., and McMahon, A. P. (1996). Early mouse development: Lessons from gene targeting. Curr. Opin. Genet. Dev. 6:439–444.

    Article  PubMed  Google Scholar 

  • Stoykova, A., Gotz, M., Gruss, P., and Price, J. (1997). Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 124:3765–3777.

    PubMed  Google Scholar 

  • Strand, D., Raska, I., and Mechler, B. M. (1994). The Drosophila lethal(2)giant larvae tumor supressor protein is a component of the cytoskeleton. J. Cell Biol. 127:1345–1360.

    Article  PubMed  Google Scholar 

  • Stuart, E. T., and Gruss, P. (1995). PAX genes: What’s new in developmental biology and cancer? Hum. Mol. Genet. 4:1717–1720.

    PubMed  Google Scholar 

  • Stuart, E. T., and Gruss, P. (1996). PAX: developmental control genes in cell growth and differentiation. Cell Growth Differ. 7:405–412.

    PubMed  Google Scholar 

  • Studer, M., Gavalas, A., Marshall, H., Ariza-McNaughton, L., Rijli, F. M., Chambon, P., and Krumlauf, R. (1998). Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125:1025–1036.

    PubMed  Google Scholar 

  • Studer, M., Lumsden, A., Ariza-McNaughton, L., Bradley, A., and Krumlauf, R. (1996). Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384:630–634.

    Article  PubMed  Google Scholar 

  • Studer, M., Pöpperl, H., Marshall, H., Kuroiwa, A., and Krumlauf, R. (1994). Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265:1728–1732.

    PubMed  Google Scholar 

  • Swift, G. H., Liu, Y., Rose, S. D., Bischof, L. J., Steelman, S., Buchberg, A. M., Wright, C. V., and MacDonald, R. J. (1998). An endocrine-exocrine switch in the activity of the pancreatic homeodomain protein PDX1 through formation of a trimeric complex with PBX1b and MRG1 (MEIS2). Mol. Cell. Biol. 18:5109–5120.

    PubMed  Google Scholar 

  • Tan, D. P., Ferrante, J., Nazarali, A., Shao, X., Kozak, C. A., Guo, V., and Nirenberg, M. (1992). Murine Hox-1.11 homeobox gene structure and expression. Proc Natl Acad Sci U.S.A. 89:6280–6284.

    PubMed  Google Scholar 

  • Taneja, R., Thisse, B., Rijli, F. M., Thisse, C., Bouillet, P., Dolle, P., and Chambon, P. (1996). The expression pattern of the mouse receptor tyrosine kinase gene MDK1 is conserved through evolution and requires Hoxa-2 for rhombomere-specific expression in mouse embryos. Dev. Biol. 177:397–412.

    Article  PubMed  Google Scholar 

  • Taniguchi, Y., Komatsu, N., and Moriuchi, T. (1995). Overexpression of the HOX4A (HOXD3) homeobox gene in human erythroleukemia HEL cells results in altered adhesive properties. Blood 85:2786–2794.

    PubMed  Google Scholar 

  • Tepass, U., Godt, D., and Winklebauer, R. (2002). Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12:572–582.

    Article  PubMed  Google Scholar 

  • Tepass, U., Truong, K., Godt, D., Ikura, M., and Peifer, M. (2000). Cadherins in embryonic and neural morphogenesis. Nat. Rev. Mol. Cell Biol. 1:91–100.

    Article  PubMed  Google Scholar 

  • Thayer, J. M., Giachelli, C. M., Mirkes, P. E., and Schwartz, S. M. (1995). Expression of osteopontin in the head process late in gastrulation in the rat. J. Exp. Zool. 272:240–244.

    Article  PubMed  Google Scholar 

  • Thayer, J. M., and Schoenwolf, G. C. (1998). Early expression of osteopontin in the chick is restricted to rhombomeres 5 and 6 and to a subpopulation of neural crest cells that arise from these segments. Anat. Rec. 250:199–209.

    Article  PubMed  Google Scholar 

  • Theokli, C., Morsi El-Kadi, A. S., and Morgan, R. (2003). TALE class homeodomain gene Irx5 is an immediate downstream target for Hoxb4 transcriptional regulation. Dev. Dyn. 227:48–55.

    Article  PubMed  Google Scholar 

  • Tkatchenko, A. V., Visconti, R. P., Shang, L., Papenbrock, T., Pruett, N. D., Ito, T., Ogawa, M., and Awgulewitsch, A. (2001). Overexpression of Hoxc13 in differentiating keratinocytes results in downregulation of a novel hair keratin gene cluster and alopecia. Development 128:1547–1558.

    PubMed  Google Scholar 

  • Tomotsune, D., Shoji, H., Wakamatsu, Y., Kondoh, H., and Takahashi, N. (1993). A mouse homologue of the Drosophila tumour-suppressor gene l(2)gl controlled by Hox-C8 in vivo. Nature 365:69–72.

    Article  PubMed  Google Scholar 

  • Trainor, P. A., and Krumlauf, R. (2001). Hox genes, neural crest cells and branchial arch patterning. Curr. Opin. Cell Biol. 13:698–705.

    Article  PubMed  Google Scholar 

  • Tremblay, P., and Gruss, P. (1994). Pax: genes for mice and men. Pharmacol. Ther. 61:205–226.

    Article  PubMed  Google Scholar 

  • Tronche, F., Ringeisen, F., Blumenfeld, M., Yaniv, M., and Pontoglio, M. (1997). Analysis of the distribution of binding sites for a tissue-specific transcription factor in the vertebrate genome. J. Mol. Biol. 266:231–245.

    Article  PubMed  Google Scholar 

  • Tuggle, C. K., Zakany, J., Cianetti, L., Peschle, C., and Nguyen-Huu, M. C. (1990). Region-specific enhancers near two mammalian homeobox genes define adjacent rostrocaudal domains in the central nervous system. Genes Dev. 4:180–189.

    PubMed  Google Scholar 

  • Turgeon, V. L., and Houenou, L. J. (1997). The role of thrombin-like (serine) proteases in the development, plasticity and pathology of the nervous system. Brain Res. Rev. 25:85–95.

    Article  PubMed  Google Scholar 

  • Valarche, I., Tissier-Seta, J. P., Hirsch, M. R., Martinez, S., Goridis, C., and Brunet, J. F. (1993). The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development 119:881–896.

    PubMed  Google Scholar 

  • van Dijk, M. A., Peltenburg, L. T., and Murre, C. (1995). Hox gene products modulate the DNA binding activity of Pbx1 and Pbx2. Mech. Dev. 52:99–108.

    Article  PubMed  Google Scholar 

  • van Doorninck, J. H., van Der Wees, J., Karis, A., Goedknegt, E., Engel, J. D., Coesmans, M., Rutteman, M., Grosveld, F., and De Zeeuw, C. I. (1999). GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci. 19:1–8.

    PubMed  Google Scholar 

  • van Oostveen, J., Bijl, J., Raaphorst, F., Walboomers, J., and Meijer, C. (1999). The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia 13:1675–1690.

    Article  PubMed  Google Scholar 

  • Vieille-Grosjean, I., and Huber, P. (1995). Transcription factor GATA-1 regulates human HOXB2 gene expression in erythroid cells. J. Biol. Chem. 270:4544–4550.

    Article  PubMed  Google Scholar 

  • Vigano, M. A., Di Rocco, G., Zappavigna, V., and Mavilio, F. (1998). Definition of the transcriptional activation domains of three human HOX proteins depends on the DNA-binding context. Mol. Cell. Biol. 18:6201–6212.

    PubMed  Google Scholar 

  • Violette, S. M., Shashikant, C. S., Salbaum, J. M., Belting, H. G., Wang, J. C., and Ruddle, F. H. (1992). Repression of the beta-amyloid gene in a Hox-3.1-producing cell line. Proc. Natl. Acad. Sci. U.S.A. 89:3805–3809.

    PubMed  Google Scholar 

  • Vollmer, J.-Y., and Clerc, R. G. (1998). Homeobox genes in the developing mouse brain. J. Neurochem. 71:1–19.

    PubMed  Google Scholar 

  • Wada, S., Tokuoka, M., Shoguchi, E., Kobayashi, K., Di Gregorio, A., Spagnuolo, A., Branno, M., Kohara, Y., Rokhsar, D., Levine, M., Saiga, H., Satoh, N., and Satou, Y. (2003). A genomewide survey of developmentally relevant genes in Ciona intestinalis. II. Genes for homeobox transcription factors. Dev. Genes Evol. 213:222–234.

    Article  PubMed  Google Scholar 

  • Wang, C.-C., Biben, C., Robb, L., Nassir, F., Barnett, L., Davidson, N. O., Koentgen, F., Tarlinton, D., and Harvey, R. P. (2000). Homeodomain factor Nkx2-3 controls regional expression of leukocyte homing coreceptor MAdCAM-1 in specialized endothelial cells of the viscera. Dev. Biol. 224:152–167.

    Article  PubMed  Google Scholar 

  • Wang, Y., Jones, F. S., Krushel, L. A., and Edelman, G. M. (1996). Embryonic expression patterns of the neural cell adhesion molecule gene are regulated by homeodomain binding sites. Proc. Natl. Acad. Sci. U.S.A. 93:1892–1896.

    Article  PubMed  Google Scholar 

  • Waskiewicz, A. J., Rikhof, H. A., Hernandez, R. E., and Moens, C. B. (2001). Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning. Development 128:4139–4151.

    PubMed  Google Scholar 

  • Werner, T. (2001). Target gene identification from expression array data by promoter analysis. Biomol. Eng. 17:87–94.

    Article  PubMed  Google Scholar 

  • Wilkinson, D. G. (1995). Genetic control of segmentation in the vertebrate hindbrain. Perspec. Dev. Neurobiol. 3:29–38.

    Google Scholar 

  • Wilkinson, D. G., Bhatt, S., Cook, M., Boncinelli, E., and Krumlauf, R. (1989). Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain. Nature 341:405–409.

    Article  PubMed  Google Scholar 

  • Wingate, R. J. T., and Lumsden, A. (1996). Persistance of rhombomeric organisation in the postsegmental hindbrain. Development 122:2143–2152.

    PubMed  Google Scholar 

  • Wizenmann, A., and Lumsden, A. (1997). Segregation of rhombomeres by differential chemoaffinity. Mol. Cell. Neurosci. 9:448–459.

    Article  PubMed  Google Scholar 

  • Wolf, L. V., Yeung, J. M., Doucette, J. R., and Nazarali, A. J. (2001). Coordinated expression of Hoxa2, Hoxd1 and Pax6 in the developing diencephalon. Neuroreport 12:329–333.

    Article  PubMed  Google Scholar 

  • Wu, A., Pangalos, M. N., Efthimiopoulos, S., Shioi, J., and Robakis, N. K. (1997). Appican expression induces morphological changes in C6 glioma cells and promotes adhesion of neural cells to the extracellular matrix. J. Neurosci. 17:4987–4993.

    PubMed  Google Scholar 

  • Wu, K., and Wolgemuth, D. J. (1993). Protein product of the somatic-type transcript of the Hoxa-4 (Hox-1.4) gene binds to homeobox consensus binding sites in its promoter and intron. J. Cell. Biochem 52:449–462.

    Article  PubMed  Google Scholar 

  • Xu, Q., Mellitzer, G., Robinson, V., and Wilkinson, D. G. (1999). In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399:267–271.

    Article  PubMed  Google Scholar 

  • Xu, Q., Mellitzer, G., and Wilkinson, D. G. (2000). Roles of Eph receptors and ephrins in segmental patterning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355:993–1002.

    Article  PubMed  Google Scholar 

  • Yamanaka, T., Horikoshi, Y., Sugiyama, Y., Ishiyama, C., Suzuki, A., Hirose, T., Iwamatsu, A., Shinohara, A., and Ohno, S. (2003). Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr. Biol. 13:734–743.

    Article  PubMed  Google Scholar 

  • Yang, X., Ji, X., Shi, X., and Cao, X. (2000). Smad1 domains interacting with Hoxc-8 induce osteoblast differentiation. J. Biol. Chem. 275:1065–1072.

    Article  PubMed  Google Scholar 

  • Yau, T. O., Kwan, C. T., Jakt, L. M., Stallwood, N., Cordes, S., and Sham, M. H. (2002). Auto/cross-regulation of Hoxb3 expression in posterior hindbrain and spinal cord. Dev. Biol. 252:287–300.

    Article  PubMed  Google Scholar 

  • Ye, Y., and Fortini, M. E. (2000). Proteolysis and developmental signal transduction. Cell Dev. Biol. 11:211–221.

    Article  Google Scholar 

  • York, R. D., Yao, H., Dillon, T., Ellig, C. L., Eckert, S. P., McCleskey, E. W., and Stork, P. J. S. (1998). Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392:622–626.

    Article  PubMed  Google Scholar 

  • Zakany, J., Tuggle, C. K., Patel, M. D., and Nguyen-Huu, C. M. (1988). Spatial regulation of homeobox gene fusions in the embryonic central nervous system of transgenic mice. Neuron 1:679–691.

    Article  PubMed  Google Scholar 

  • Zhang, F., Pöpperl, H., Morrison, A., Kovacs, E. N., Prideaux, V., Schwarz, L., Krumlauf, R., Rossant, J., and Featherstone, M. S. (1997a). Elements both 5′ and 3′ to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neurectoderm. Mech. Dev. 67:49–58.

    Article  Google Scholar 

  • Zhang, J. M., Dix, J., Langtimm-Sedlak, C. J., Trusk, T., Schroeder, B., Hoffmann, R., Strosberg, A. D., Winslow, J. W., and Sieber-Blum, M. (1997b). Neurotrophin-3- and norepinephrine-mediated adrenergic differentiation and the inhibitory action of desipramine and cocaine. J. Neurobiol. 32:262–280.

    Article  Google Scholar 

  • Zhang, J. M., and Sieber-Blum, M. (1992). Characterization of the norepinephrine uptake system and the role of norepinephrine in the expression of the adrenergic phenotype by quail neural crest cells in clonal culture. Brain Res. 570:251–258.

    Article  PubMed  Google Scholar 

  • Zhang, X., Zhang, H., and Oberdick, J. (2002). Conservation of the developmentally regulated dendritic localization of a Purkinje cell-specific mRNA that encodes a G-protein modulator: Comparison of rodent and human Pcp2(L7) gene structure and expression. Mol. Brain Res. 105:1–10.

    Article  PubMed  Google Scholar 

  • Zhao, Y., and Potter, S. S. (2001). Functional specificity of the Hoxa13 homeobox. Development 128:3197–3207.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Nazarali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akin, Z.N., Nazarali, A.J. Hox Genes and Their Candidate Downstream Targets in the Developing Central Nervous System. Cell Mol Neurobiol 25, 697–741 (2005). https://doi.org/10.1007/s10571-005-3971-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-3971-9

Key Words

Navigation