Skip to main content
Log in

New β-carotene-xylan complexes: preparation and characterization

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The study aimed to propose a new system based on xylan for β-carotene delivery into aqueous environments. The xylan fraction of low molecular weight of 9020 ± 185 g/mol was purified from the commercial production of beechwood xylan. β-Carotene-xylan complexes were prepared by the mechanochemical method, i.e., shaking and the following freeze-drying. The formation of the complex was demonstrated by spectroscopic methods. The optimal β-carotene/xylan mass ratio for the complexation was 1/1. The loading capacity, size, and solubility of the complex were 0.22 ± 0.01 mg/mg, 205 ± 2 nm, and 39.2 mg/mL, respectively. Moreover, the complexes exhibited antioxidant activity tested by two methods, i.e., ferric reducing antioxidant power and free radical scavenging assays. The new system could serve for β-carotene incorporation into functional foods, especially into water-based ones.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Azim AAA, Atta AM, Farahat MSF, Boutros WY (1998) Determination of intrinsic viscosity of polymeric compounds through a single specific viscosity measurement. Polymer 39:6827–6833

    Article  CAS  Google Scholar 

  • Adamkiewicz P, Sujak A, Gruszecki W (2013) Spectroscopic study on formation of aggregated structures by carotenoids: Role of water. J Mol Struct 1046:44–51

    Article  CAS  Google Scholar 

  • Ayubi MM, Werner A, Steudler S, Haase S, Lange R, Walther Th, Hilpmann G (2021) Enhanced xylan conversion to xylitol in a bio- and chemocatalytic one-pot process. Catal Today 367:137–144

    Article  CAS  Google Scholar 

  • Baranska M, Schutze W, Schulz H (2006) Determination of lycopene and β-carotene content in tomato and related products: Comparison of FT-Raman, ATR-IR, and NIR spectroscopy. Anal Chem 78:8456–8461

    Article  CAS  PubMed  Google Scholar 

  • Beckers SJ, Wetherbee L, Fisher J, Wurm FR (2020) Fungicide-loaded and biodegradable xylan-based nanocarriers. Biopolymers 111:e23413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beeren S, Meier S, Hindsgaul O (2013) Probing helical hydrophobic binding sites in branched starch polysaccharides using NMR spectroscopy. Chem Eur J 19:16314–16320

    Article  CAS  PubMed  Google Scholar 

  • Bian J, Peng F, Peng P, Xu F, Sun RC (2010) Isolation and fractionation of hemicelluloses by graded ethanol precipitation from Caragana korshinskii. Carbohydr Res 345:802–809

    Article  CAS  PubMed  Google Scholar 

  • Blanch GGP, del Castillo MLR, del Mar CM, Perez-Mendez M, Sanchez-Cortes S (2007) Stabilization of all-trans-lycopene from tomato by encapsulation using cyclodextrins. Food Chem 105:1335–1341

    Article  CAS  Google Scholar 

  • Bockuviene A, Sereikaite J (2019) Preparation and characterisation of novel water-soluble β-carotene-chitooligosaccharides complexes. Carbohyd Polym 225:115226

    Article  CAS  Google Scholar 

  • Capek P, Matulova M (2013) An arabino(glucurono)xylan isolated from immunomodulatory active hemicellulose fraction of Salvia officinalis L. Int J Biol Macromol 59:396–401

    Article  CAS  PubMed  Google Scholar 

  • Celitan E, Gruskiene R, Sereikaite J (2021) An optimization procedure for preparing aqueous CAR/HP-CD aggregate dispersions. Molecules 26:7562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Li S, Fu Y, Li C, Chen D, Chen H (2019) Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions. J Funct Foods 54:536–551

    Article  CAS  Google Scholar 

  • Chen H, Liu Y, Yang T, Chen D, Xiao Y, Qin W, Wu D, Zhang Q, Lin D, Liu Y, Liu A, Huang Z (2021) Interactive effects of molecular weight and degree of substitution on biological activities of arabinoxylan and its hydrolysates from triticale bran. Int J Biol Macromol 166:1409–1418

    Article  CAS  PubMed  Google Scholar 

  • Da Costa Urtiga SC, Marcelino HR, do Egito EST, Oliveira EE, (2020) Xylan in drug delivery: A review of its engineered structures and biomedical applications. Eur J Pharm Biopharm 151:199–208

    Article  Google Scholar 

  • Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Article  Google Scholar 

  • Dias MG, Borge GIA, Kljak K, Mandic AI, Mapelli-Brahm P, Olmedilla-Alonso B, Pintea AM, Ravasco F, Saponjac VT, Sereikaite J, Vargas-Murga L, Vulic JJ, Melendez-Martinez AJ (2021) European database of carotenoid levels in foods. Fac Affect Carotenoid Content Foods 10:912

    CAS  Google Scholar 

  • Dondelinger E, Aubry N, Chaabane FB, Cohen C, Tayeb J, Remond C (2016) Contrasted enzymatic cocktails reveal the importance of cellulases and hemicellulases activity ratios for the hydrolysis of cellulose in presence of xylans. AMB Exp 6:24

    Article  Google Scholar 

  • Dos Santos PP, de Aguiar AL, Flores SH, de Oliveira RA (2018) Nanoencapsulation of carotenoids: a focus on different delivery systems and evaluation parameters. J Food Sci Technol 55:3851–3860

    Article  PubMed  PubMed Central  Google Scholar 

  • Du J, Li B, Li C, Zhang Y, Yu G, Wang H, Mu X (2016) Tough and multi-responsive hydrogel based on the hemicellulose from the spent liquor of viscose process. Int J Biol Macromol 88:451–456

    Article  CAS  PubMed  Google Scholar 

  • Ebringerova A, Heinze Th (2000) Xylan and xylan derivatives – biopolymers with valuable properties, 1. Macromol Rapid Commun 21:542–556

    Article  CAS  Google Scholar 

  • Ebringerova A, Hromadkova Z, Heinze Th (2005) Hemicellulose. Adv Polym Sci 186:1–67

    Article  CAS  Google Scholar 

  • Escalante A, Goncalves A, Bodin A, Stepan A, Sandstrom C, Toriz G, Gatenholm P (2012) Flexible oxygen barrier films spruce xylan. Carbohydr Polym 87:2381–2387

    Article  CAS  Google Scholar 

  • Farias D, de Melo AHF, da Silva MF, Bevilaqua GC, Ribeiro DG, Goldbeck R, Forte MBS, Maugeri-Filho F (2022) New biotechnological opportunities for C5 sugars from lignocellulosic materials. Bioresour Technol Rep 17:100956

    Article  CAS  Google Scholar 

  • Foscan AL, Polyakov NE, Kispert LD (2019) Supramolecular carotenoid complexes of enhanced solubility and stability – the way of bioavailability improvement. Molecules 24:3947

    Article  Google Scholar 

  • Gao Y, Focsan AL, Kispert LD (2020) Antioxidant activity in supramolecular complexes favoured by nonpolar environment and disfavoured by hydrogen bonding. Antioxidants 9:625

    Article  CAS  PubMed Central  Google Scholar 

  • Gomes KR, Chimphango AFA, Gorgens JF (2015) Modifying solubility of polymeric xylan extracted from Eucalyptus grandis and sugarcane bagasse by suitable side chain removing enzymes. Carbohydr Polym 131:177–185

    Article  CAS  PubMed  Google Scholar 

  • Hada M, Nagy V, Deli J, Agocs A (2012) Hydrophilic carotenoids: recent progress. Molecules 17:5003–5012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao H, Li N, Wang H, Jia S, Liu Q, Peng F (2021) Dialdehyde xylan-based sustainable, stable, and catalytic liquid metal nano-inks. Green Chem 23:7796–7804

    Article  CAS  Google Scholar 

  • Higuchi T, Connors KA (1965) Phase-solubility techniques. Adv Anal Chem Instrum 4:117–212

    CAS  Google Scholar 

  • Kacurakova M, Ebringerova A, Hirsch J, Hromadkova Z (1994) Infrared study of arabinoxylans. J Sci Food Agric 66:423–427

    Article  CAS  Google Scholar 

  • Kacurakova M, Wellner N, Ebringerova A, Hromadkova Z, Wilson RH, Belton PS (1999) Characterization of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocoll 13:35–41

    Article  Google Scholar 

  • Kacurakova M, Wilson RH (2001) Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr Polym 44:291–303

    Article  CAS  Google Scholar 

  • Kohn R, Kovac P (1978) Dissociation constants of D-galacturonic and D-glucuronic acid and their O-methyl derivatives. Chem Zvesti 32:478–485

    CAS  Google Scholar 

  • Kong L, Bhosale R, Ziegler GR (2018) Encapsulation and stabilization of β-carotene by amylose inclusion complexes. Food Res Int 105:446–452

    Article  CAS  PubMed  Google Scholar 

  • Koshijima T, Timell TE, Zinbo M (1965) The number-average molecular weight of native hardwood xylans. J Polym Sci Part C Polym Symp 11:265–279

    Article  Google Scholar 

  • Koyama Y, Hosomi M, Hashimoto H (1989) 1H NMR spectra of the all-trans, 7-cis, 9-cis and 15-cis isomers of β-carotene: Elongation of the double bond and shortening of the single bond toward the center of the conjugated chain as revealed by vicinal coupling constants. J Mol Struct 193:185–201

    Article  CAS  Google Scholar 

  • Lavelli V, Sereikaite J (2022) Kinetic study of encapsulated β-carotene degradation in aqueous environments: a review. Foods 11:317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Dai Q, Ren J, Jian L, Peng F, Sun R, Liu G (2016) Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production. Carbohydr Polym 136:203–209

    Article  CAS  PubMed  Google Scholar 

  • Linder A, Bergman R, Bodin A, Gatenholm P (2003) Mechanism of assembly of xylan onto cellulose surfaces. Langmuir 19:5072–5077

    Article  CAS  Google Scholar 

  • Lu H, Yadav V, Zhong M, Bilal M, Taherzadeh MJ, Iqbal HMN (2022) Bioengineered microbial platforms for biomass-derived biofuel production – a review. Chemosphere 288:132528

    Article  CAS  PubMed  Google Scholar 

  • Marquez-Escalante JA, Rascon-Chu A, Campa-Mada A, Martinez-Robinson KG, Carvajal-Millan E (2020) Influence of carboxymethylation on the gelling capacity, rheological properties, and antioxidant activity of feruloylated arabinoxylans from different sources. J Appl Polym Sci 137:48325

    Article  CAS  Google Scholar 

  • Martini S, D’Addario C, Bonechi C, Leone G, Tognazzi A, Consumi M, Magnani A, Rossi C (2010) Increasing photostability and water-solubility of carotenoids: synthesis and characterization of β-carotene-humic acid complexes. J Photochem Photobiol b: Biology 101:355–361

    Article  CAS  PubMed  Google Scholar 

  • McCleary BV, McGeough P (2015) A comparison of polysaccharide substrates and reducing sugar methods for the measurement of endo-1,4-β-xylanase. Appl Biochem Biotechnol 177:1152–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melendez-Martinez AJ (2019) An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, and disease. Mol Nutr Food Res 63:1801045

    Article  Google Scholar 

  • Melendez-Martinez AJ, Bohm V, Borge GIA, Cano MP, Fikselova M, Gruskiene R, Lavelli V, Loizzo MR, Mandic AI, Mapelli-Brahm P, Misan AC, Pintea AM, Sereikaite J, Vargas-Murga L, Vlaisavljevic SS, Vulic JJ, O’Brien NM (2021) Carotenoids: Considerations for their use in functional foods, nutraceuticals, nutricosmetics, supplements, botanicals, and novel foods in the context of sustainability, circular economy, and climate change. Annu Rev Food Sci Technol 12:433–460

    Article  CAS  PubMed  Google Scholar 

  • Moulay S (2013) Molecular iodine/polymer complexes. J Polym Eng 33:389–443

    Article  CAS  Google Scholar 

  • Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41

    Article  CAS  PubMed  Google Scholar 

  • Natarajmurthy SH, Askari M, Pullabhatla S, Dharmesh SM (2016) A novel β-carotene-associated carrot (Daucus carota L.) pectic polysaccharide. Nutrition 32:818–826

    Article  CAS  PubMed  Google Scholar 

  • Ravichandra K, Balaji R, Devarapalli K, Batchu UR, Thadikamala S, Banoth L, Pinnamaneni S, Prakasham RS (2022) Enzymatic production of probiotic xylooligosaccharides from sorghum (Sorghum bicolor (L) xylan: value addition to sorghum bagasse. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-02216-z

    Article  Google Scholar 

  • Rodriquez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Melendez-Martinez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu Ch (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93

    Article  Google Scholar 

  • Rosa-Sibakov N, Hakala TK, Sozer N, Nordlund E, Poutanen K, Aura AM (2016) Birch pulp xylan works as a hydrocolloid in acid milk gels and is fermented slowly in vitro. Carbohydr Polym 154:305–312

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Tasumi M (1983) Normal-coordinate analysis of β-carotene isomers and assignments of the Raman and infrared bands. J Raman Spectrosc 14:310–321

    Article  CAS  Google Scholar 

  • Santibanez L, Henriquez C, Corro-Tejeda R, Bernal S, Armijo B, Salazar O (2021) Xylooligosaccharides from lignocellulosic biomass: A comprehensive review. Carbohydr Polym 251:117118

    Article  CAS  PubMed  Google Scholar 

  • Salam A, Pawlak JJ, Venditti RA, El-Tahlawy K (2011) Incorporation of carboxyl groups into xylan for improved absorbency. Cellulose 18:1033–1041

    Article  CAS  Google Scholar 

  • Shi P, Chen X, Meng K, Huang H, Bai Y, Luo H, Yang P, Yao B (2013) Distinct actions by Paenibacillus sp. strain E18 α-L-arabinofuranosidases and xylanase in xylan degradation. Appl Environ Microbiol 79:1990–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundararajan PR, Rao VSR (1969) Conformational studies of β-D-1,4’-xylan. Biopolymers 8:305–312

    Article  CAS  Google Scholar 

  • Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 19:29–43

    Article  CAS  Google Scholar 

  • Wei Y, Sun C, Dai L, Zhan X, Gao Y (2018) Structure, physicochemical stability and in vitro simulated gastrointestinal digestion properties of β-carotene loaded zein-propylene glycol alginate composite nanoparticles fabricated by emulsification-evaporation method. Food Hydrocoll 81:149–158

    Article  CAS  Google Scholar 

  • Xiao F, Xu T, Lu B, Liu R (2020) Guidelines for antioxidant assays for food components. Food Front 1:60–69

    Article  Google Scholar 

  • Yi J, Lam TI, Yokoyama W, Cheng LW, Zhong F (2015) Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells. Food Hydrocoll 43:31–40

    Article  CAS  Google Scholar 

  • Yu X, Atalla RH (2005) The complex of xylan and iodine: the induction and detection of nanoscale order. Carbohydr Res 340:981–988

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Du L, Z. Jin Z, X. Xu X, (2013) Storage stability and antioxidant activity of complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Carbohydr Polym 91:385–389

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhan A, Ye Y, Liu C, Hang F, Li K, Li J (2021) Molecular modification, structural characterization, and biological activity of xylans. Carbohydr Polym 269:118248

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research has received funding from European Social Fund (project No 09.3.3-LMT-K-712–19-0064) under a grant agreement with the Research Council of Lithuania (LMTLT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Sereikaite.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 745 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straksys, A., Kavleiskaja, T., Gruskiene, R. et al. New β-carotene-xylan complexes: preparation and characterization. Cellulose 29, 8705–8718 (2022). https://doi.org/10.1007/s10570-022-04804-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04804-2

Keywords

Navigation