Skip to main content
Log in

Improved hygrothermal durability of flax/polypropylene composites after chemical treatments through a hybrid approach

  • Note
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

There are growing research interests in flax fibers due to their renewable ‘green’ origin and high strength. However, these natural fibers easily absorb moisture and have poor adhesion with polymer matrix leading to low interfacial strength for the composites. A hybrid chemical treatment technique combining alkali (sodium hydroxide) and silane treatments is adopted in the current study to modify flax fibers for improved performances of flax/polypropylene composites. Changes in chemical composition, microstructure, wettability, surface morphology, crystallinity and tensile properties of single flax fiber before and after chemical treatments were comprehensively characterized using techniques including SEM, FTIR, AFM, XRD, micro-fiber tester, etc. It was found that hemicellulose and lignin at the fiber surface were removed due to alkali treatment, which helped to reduce moisture absorption of the composites. Alkali-treated flax fibers were later subjected to silane treatment, which helped to improve the compatibility between flax fiber and polypropylene matrix. After alkali-silane hybrid chemical treatment, moisture absorption of the composites was further decreased. At the same time, the interfacial bonding strength between flax and polypropylene is significantly enhanced. All these results validate the great advantage of the hybrid chemical treatment approach for flax/polypropylene composites, which has the potential to promote the application of chemical treatment techniques in the plant fiber composite industry.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

Download references

Funding

This research work was supported by “the Fundamental Research Funds for the Central Universities” (WUT: 2019III074GX) and the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng  Zhong.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X.,  Zhong, Y., Cheng, M. et al. Improved hygrothermal durability of flax/polypropylene composites after chemical treatments through a hybrid approach. Cellulose 28, 11209–11229 (2021). https://doi.org/10.1007/s10570-021-04179-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04179-w

Keywords

Navigation