Skip to main content
Log in

Antibacterial and wound healing activities of silver nanoparticles embedded in cellulose compared to other polysaccharides and protein polymers

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The aggregation of silver nanoparticles (AgNPs) in colloidal solution and the oxidative cytotoxicity towards human cells are two major hindrances for their thriving medicinal applications. Their incorporation in natural polymers such as cellulose, chitosan, alginate, collagen, gelatin, silk fibroin, carrageenan, curdlan, hyaluronic acid, keratin and starch may be an alluring alternative strategy to sidestep these complications and attain advantageous wound dressings. Biocompatibility, bioavailability, biodegradability, and inherent therapeutic properties known for such polymers, would accelerate the healing of infected chronic wounds. However, the low thermal stability, mechanical strength, rapid biodegradation, and weak washing resistance properties are some of the limitations for these polymers. Herein, recent advances, present challenges, and future perspectives for AgNPs-incorporated nanocomposites (NCs) are discussed to realize the ideal antibacterial activities by exploiting the abundant natural biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

copyright permission from (Zhao et al. 2015))

Fig. 5
Fig. 6

copyright permission from (Tao et al. 2019)

Similar content being viewed by others

References

  • Abdelgawad AM, El-Naggar ME, Elsherbiny DA, Ali S, Abdel-Aziz MS, Abdel-Monem YK (2020) Antibacterial carrageenan/cellulose nanocrystal system loaded with silver nanoparticles, prepared via solid-state technique. J Environ Chem Eng 8:104276. https://doi.org/10.1016/j.jece.2020.104276

    Article  CAS  Google Scholar 

  • Abdellatif AAH, Alturki HNH, Tawfeek HM (2021) Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities. Sci Rep 11:84. https://doi.org/10.1038/s41598-020-79834-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acharya D, Singha KM, Pandey P, Mohanta B, Rajkumari J, Singha LP (2018) Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Sci Rep 8:1–11

    Article  Google Scholar 

  • Adeli H, Khorasani MT, Parvazinia M (2019) Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int J Biol Macromol 122:238–254

    Article  CAS  PubMed  Google Scholar 

  • Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A (2019) Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: towards natural therapeutics. Bioeng Trans Med 4:96–115

    Article  CAS  Google Scholar 

  • Ahmad T, Ismail A, Ahmad SA, Khalil KA, Kumar Y, Adeyemi KD et al (2017) Recent advances on the role of process variables affecting gelatin yield and characteristics with special reference to enzymatic extraction: a review. Food Hydrocolloids 63:85–96. https://doi.org/10.1016/j.foodhyd.2016.08.007

    Article  CAS  Google Scholar 

  • Alavi M (2019) Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications. e-Polymers 19:103–119

    Article  CAS  Google Scholar 

  • Alavi M (2020) Applications of Chitosan and Nanochitosan in Formulation of Novel Antibacterial and Wound Healing Agents. In: Rai M (ed) Nanotechnology in Skin, Soft Tissue, and Bone Infections. Springer International Publishing, Cham, pp 169–181

    Chapter  Google Scholar 

  • Alavi M, Jabari E, Jabbari E (2020) Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Rev Anti Infect Ther. https://doi.org/10.1080/14787210.2020.1810569

    Article  PubMed  Google Scholar 

  • Alavi M, Karimi N (2019) Biosynthesis of Ag and Cu NPs by secondary metabolites of usnic acid and thymol with biological macromolecules aggregation and antibacterial activities against multi drug resistant (MDR) bacteria. Int J Biol Macromol 128:893–901. https://doi.org/10.1016/j.ijbiomac.2019.01.177

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Karimi N (2020) Hemoglobin self-assembly and antibacterial activities of bio-modified Ag-MgO nanocomposites by different concentrations of Artemisia haussknechtii and Protoparmeliopsis muralis extracts. Int J Biol Macromol 152:1174–1185. https://doi.org/10.1016/j.ijbiomac.2019.10.207

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Karimi N, Valadbeigi T (2019) Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via protoparmeliopsis muralis lichen aqueous extract against multi-drug-resistant bacteria. ACS Biomater Sci Eng 5:4228–4243. https://doi.org/10.1021/acsbiomaterials.9b00274

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Kennedy JF (2021) Recent advances of fabricated and modified Ag, Cu, CuO and ZnO nanoparticles by herbal secondary metabolites, cellulose and pectin polymers for antimicrobial applications. Cellulose 28:3297–3310. https://doi.org/10.1007/s10570-021-03746-5

    Article  CAS  Google Scholar 

  • Alavi M, Nokhodchi A (2020) Antimicrobial and wound treatment aspects of micro-and nanoformulations of carboxymethyl, dialdehyde, and TEMPO-oxidized derivatives of cellulose: recent advances. Macromol Biosci 20:1900362

    Article  CAS  Google Scholar 

  • Alavi M, Rai M (2019) Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Appl Microbiol Biotechnol 103:8669–8676

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Rai M (2020) Topical delivery of growth factors and metal/metal oxide nanoparticles to infected wounds by polymeric nanoparticles: an overview. Expert Rev Anti Infect Ther 18:1021–1032. https://doi.org/10.1080/14787210.2020.1782740

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Rai M (2021) Chapter 11 - Antibacterial and wound healing activities of micro/nanocarriers based on carboxymethyl and quaternized chitosan derivatives. In: Rai M, dos Santos CA (eds) Biopolymer-based nano films. Elsevier, pp 191–201

  • Alavi M, Varma RS (2020) Overview of novel strategies for the delivery of anthracyclines to cancer cells by liposomal and polymeric nanoformulations. Int J Biol Macromol 164:2197–2203. https://doi.org/10.1016/j.ijbiomac.2020.07.274

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Varma RS (2021) Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: recent advances. Sustain Chem Pharm 21:100412. https://doi.org/10.1016/j.scp.2021.100412

    Article  Google Scholar 

  • Alavi M, Webster TJ (2021) Recent progress and challenges for polymeric microsphere compared to nanosphere drug release systems: is there a real difference? Biorg Med Chem 33:116028. https://doi.org/10.1016/j.bmc.2021.116028

    Article  CAS  Google Scholar 

  • Alemzadeh E, Oryan A, Mohammadi AA (2020) Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1β, TGF-β1, and bFGF in burn wound model in rat. J Biomed Mater Res B Appl Biomater 108:555–567

    Article  CAS  PubMed  Google Scholar 

  • Alipour R, Khorshidi A, Shojaei AF, Mashayekhi F, Moghaddam MJM (2019) Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers. Polym Test 79:106022. https://doi.org/10.1016/j.polymertesting.2019.106022

    Article  CAS  Google Scholar 

  • Anuduang A, Loo YY, Jomduang S, Lim SJ, Wan Mustapha WA (2020) Effect of thermal processing on physico-chemical and antioxidant properties in mulberry silkworm (Bombyx mori L.) powder. Foods 9:871

    Article  CAS  PubMed Central  Google Scholar 

  • Athira GK, Jyothi AN, Vishnu VR (2018) Water soluble octenyl succinylated cassava starch-curcumin nanoformulation with enhanced bioavailability and anticancer potential. Starch-Stärke 70:1700178

    Article  CAS  Google Scholar 

  • Bastos Araruna F, Oliveira Sousa Araruna F, Lima Alves Pereira LP, Aranha Brito MC, Veras Quelemes P, de Araújo-Nobre AR et al (2020) Green syntheses of silver nanoparticles using babassu mesocarp starch (Attalea speciosa Mart. ex Spreng.) and their antimicrobial applications. Environ Nanotechnol Monit. Manage 13:100281. https://doi.org/10.1016/j.enmm.2019.100281

    Article  Google Scholar 

  • Bekmukhametova A, Ruprai H, Hook JM, Mawad D, Houang J, Lauto A (2020) Photodynamic therapy with nanoparticles to combat microbial infection and resistance. Nanoscale 12:21034–21059

    Article  CAS  PubMed  Google Scholar 

  • Bhatt SM (2014) Lignocellulosic feedstock conversion, inhibitor detoxification and cellulosic hydrolysis–a review. Biofuels 5:633–649

    Article  CAS  Google Scholar 

  • Blanco Parte FG, Santoso SP, Chou C-C, Verma V, Wang H-T, Ismadji S et al (2020) Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 40:397–414

    Article  CAS  PubMed  Google Scholar 

  • Bundjaja V, Santoso SP, Angkawijaya AE, Yuliana M, Soetaredjo FE, Ismadji S et al (2021) Fabrication of cellulose carbamate hydrogel-dressing with rarasaponin surfactant for enhancing adsorption of silver nanoparticles and antibacterial activity. Mater Sci Eng, C 118:111542. https://doi.org/10.1016/j.msec.2020.111542

    Article  CAS  Google Scholar 

  • Cai Z, Dai Q, Guo Y, Wei Y, Wu M, Zhang H (2019) Glycyrrhiza polysaccharide-mediated synthesis of silver nanoparticles and their use for the preparation of nanocomposite curdlan antibacterial film. Int J Biol Macromol 141:422–430. https://doi.org/10.1016/j.ijbiomac.2019.09.018

    Article  CAS  PubMed  Google Scholar 

  • Celebioglu A, Topuz F, Yildiz ZI, Uyar T (2019) One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr Polym 207:471–479. https://doi.org/10.1016/j.carbpol.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wu J, Tang Q, Xu C, Huang Y, Huang D, et al (2020) Nano-micelles based on hydroxyethyl starch-curcumin conjugates for improved stability, antioxidant and anticancer activity of curcumin. Carbohydr Polym 228:115398

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Maya I, Guarino V, Almaguer-Flores A, Alvarez-Perez MA, Varesano A, Vineis C (2019) Highly polydisperse keratin rich nanofibers: scaffold design and in vitro characterization. J Biomed Mater Res, Part A 107:1803–1813

    CAS  Google Scholar 

  • Dill V, Mörgelin M (2020) Biological dermal templates with native collagen scaffolds provide guiding ridges for invading cells and may promote structured dermal wound healing. Int Wound J 17:618–630. https://doi.org/10.1111/iwj.13314

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding C, Tian M, Feng R, Dang Y, Zhang M (2020) Novel self-healing hydrogel with injectable, pH-responsive, strain-sensitive, promoting wound-healing, and hemostatic properties based on collagen and chitosan. ACS Biomater Sci Eng 6:3855–3867

    Article  CAS  PubMed  Google Scholar 

  • Diniz FR, Maia RCAP, Rannier L, Andrade LN, Chaud V, M, da Silva CF, et al (2020) Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials 10:390

    Article  CAS  PubMed Central  Google Scholar 

  • Divakar P, Yin K, Wegst UGK (2019) Anisotropic freeze-cast collagen scaffolds for tissue regeneration: How processing conditions affect structure and properties in the dry and fully hydrated states. J Mech Behav Biomed Mater 90:350–364

    Article  CAS  PubMed  Google Scholar 

  • El-Aassar MR, Ibrahim OM, Fouda MMG, El-Beheri NG, Agwa MM (2020) Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr Polym 238:116175. https://doi.org/10.1016/j.carbpol.2020.116175

    Article  CAS  PubMed  Google Scholar 

  • El-Fiqi A, Lee JH, Lee E-J, Kim H-W (2013) Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater 9:9508–9521

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar ME, Hasanin M, Youssef AM, Aldalbahi A, El-Newehy MH, Abdelhameed RM (2020) Hydroxyethyl cellulose/bacterial cellulose cryogel dopped silver@titanium oxide nanoparticles: Antimicrobial activity and controlled release of Tebuconazole fungicide. Int J Biol Macromol 165:1010–1021. https://doi.org/10.1016/j.ijbiomac.2020.09.226

    Article  CAS  PubMed  Google Scholar 

  • Elnashar MMM, Yassin MA (2009) Covalent immobilization of β-galactosidase on carrageenan coated with chitosan. J Appl Polym Sci 114:17–24. https://doi.org/10.1002/app.30535

    Article  CAS  Google Scholar 

  • Esparza Y, Ullah A, Boluk Y, Wu J (2017) Preparation and characterization of thermally crosslinked poly (vinyl alcohol)/feather keratin nanofiber scaffolds. Mater Des 133:1–9

    Article  CAS  Google Scholar 

  • Ezhilarasu H, Vishalli D, Dheen ST, Bay B-H, Srinivasan DK (2020) Nanoparticle-Based Therapeutic Approach for Diabetic Wound Healing. Nanomaterials 10:1234

    Article  CAS  PubMed Central  Google Scholar 

  • Feroz S, Muhammad N, Ranayake J, Dias G (2020) Keratin - Based materials for biomedical applications. Bioactive Mater 5:496–509. https://doi.org/10.1016/j.bioactmat.2020.04.007

    Article  Google Scholar 

  • Gadade DD, Pekamwar SS (2020) Cyclodextrin based nanoparticles for drug delivery and theranostics. Adv Pharmac Bulletin 10:166

    Article  CAS  Google Scholar 

  • García-Ríos V, Ríos-Leal E, Robledo D, Freile-Pelegrin Y (2012) Polysaccharides composition from tropical brown seaweeds. Phycol Res 60:305–315

    Article  CAS  Google Scholar 

  • Garg U, Chauhan S, Nagaich U, Jain N (2019) Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharmac Bulletin 9:195

    Article  CAS  Google Scholar 

  • Ge L, Xu Y, Li X, Yuan L, Tan H, Li D et al (2018) Fabrication of antibacterial collagen-based composite wound dressing. ACS Sustainable Chemistry & Engineering 6:9153–9166. https://doi.org/10.1021/acssuschemeng.8b01482

    Article  CAS  Google Scholar 

  • Goel A, Meher MK, Gupta P, Gulati K, Pruthi V, Poluri KM (2019) Microwave assisted κ-carrageenan capped silver nanocomposites for eradication of bacterial biofilms. Carbohydr Polym 206:854–862. https://doi.org/10.1016/j.carbpol.2018.11.033

    Article  CAS  PubMed  Google Scholar 

  • Gou L, Xiang M, Ni X (2020) Development of wound therapy in nursing care of infants by using injectable gelatin-cellulose composite hydrogel incorporated with silver nanoparticles. Mater Lett 277:128340. https://doi.org/10.1016/j.matlet.2020.128340

    Article  CAS  Google Scholar 

  • Graça MFP, Miguel SP, Cabral CSD, Correia IJ (2020) Hyaluronic acid—Based wound dressings: a review. Carbohydr Polym 241:116364. https://doi.org/10.1016/j.carbpol.2020.116364

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Yang X, Deng J, Zhu L, Wang B, Hao S (2018) Keratin nanoparticles-coating electrospun PVA nanofibers for potential neural tissue applications. J Mater Sci Mater Med 30:9. https://doi.org/10.1007/s10856-018-6207-5

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Yang X, Deng J, Zhu L, Wang B, Hao S (2019) Keratin nanoparticles-coating electrospun PVA nanofibers for potential neural tissue applications. J Mater Sci Mater Med 30:9

    Article  CAS  Google Scholar 

  • Han Y, Lv S (2019) Synthesis of chemically crosslinked pullulan/gelatin-based extracellular matrix-mimetic gels. Int J Biol Macromol 122:1262–1270

    Article  CAS  PubMed  Google Scholar 

  • He H, Cai R, Wang Y, Tao G, Guo P, Zuo H et al (2017) Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. Int J Biol Macromol 104:457–464. https://doi.org/10.1016/j.ijbiomac.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhao X, Zhang Z, Liang Y, Yin Z, Chen B et al (2020) Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing. Chem Mater 32:6595–6610

    Article  CAS  Google Scholar 

  • Hussein J, El-Naggar ME, Latif YA, Medhat D, El Bana M, Refaat E et al (2018) Solvent-free and one-pot synthesis of silver and zinc oxide nanoparticles: activity toward cell membrane component and insulin signaling pathway in experimental diabetes. Colloids Surf B Biointerfaces 170:76–84. https://doi.org/10.1016/j.colsurfb.2018.05.058

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Wang D, Li F, Li D, Huang Q (2020) Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: characterization, antimicrobial effect and advantages in storage application. Int J Biol Macromol 148:1280–1289

    Article  CAS  PubMed  Google Scholar 

  • Jose LM, Kuriakose S (2019) Photochemical studies and photoinduced antibacterial properties of silver nanoparticle-encapsulated biomacromolecule bovine serum albumin functionalised with photoresponsive chromophoric system 2-[(E)-(3-hydroxynaphthalen-2-yl) diazenyl] benzoic acid. Macromol Res 27:73–82

    Article  CAS  Google Scholar 

  • Kaczmarek B, Nadolna K, Owczarek A (2020) Chapter 6 - The physical and chemical properties of hydrogels based on natural polymers. In: Chen Y (ed) Hydrogels based on natural polymers. Elsevier, pp 151–172

  • Kurakula M, Rao GSNK, Kiran V, Hasnain MS, Nayak AK (2020) Alginate-based hydrogel systems for drug releasing in wound healing. In: Alginates in drug delivery. Elsevier, pp 323–358

  • Li K, Guan G, Zhu J, Wu H, Sun Q (2019) Antibacterial activity and mechanism of a laccase-catalyzed chitosan–gallic acid derivative against Escherichia coli and Staphylococcus aureus. Food Control 96:234–243. https://doi.org/10.1016/j.foodcont.2018.09.021

    Article  CAS  Google Scholar 

  • Liang L, Hou T, Ouyang Q, Xie L, Zhong S, Li P et al (2020) Antimicrobial sodium alginate dressing immobilized with polydopamine-silver composite nanospheres. Compos B Eng 188:107877. https://doi.org/10.1016/j.compositesb.2020.107877

    Article  CAS  Google Scholar 

  • Lim Y-S, Ok Y-J, Hwang S-Y, Kwak J-Y, Yoon S (2019) Marine collagen as a promising biomaterial for biomedical applications. Mar Drugs 17:467

    Article  CAS  PubMed Central  Google Scholar 

  • Liu G, Yu R, Jiang J, Ding Z, Ma J, Liang R (2021) Robust immobilization of anionic silver nanoparticles on cellulose filter paper toward a low-cost point-of-use water disinfection system with improved anti-biofouling properties. RSC Adv 11:4873–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomelí-Marroquín D, Medina Cruz D, Nieto-Argüello A, Vernet Crua A, Chen J, Torres-Castro A et al (2019) Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int J Nanomed 14:2171–2190. https://doi.org/10.2147/IJN.S192757

    Article  Google Scholar 

  • Luo Y, Wang T (2016) Chapter 9 - Pharmaceutical and osmetic applications of protein by-products. In Singh Dhillon G (ed) Protein byproducts. Academic Press, pp 147–160

  • Ma Z, Liu J, Shen G, Zheng X, Pei Y, Tang K (2021) In-situ synthesis and immobilization of silver nanoparticles on microfibrillated cellulose for long-term antibacterial applications. Cellulose 28:1–17

    Article  CAS  Google Scholar 

  • Mercado-Mercado G, Laura A, Alvarez-Parrilla E (2020) Effect of pectin on the interactions among phenolic compounds determined by antioxidant capacity. J Mol Struct 1199:126967

    Article  CAS  Google Scholar 

  • Moghadam A, Ijaz M, Asim MH, Mahmood A, Jelkmann M, Matuszczak B et al (2018) Non-ionic thiolated cyclodextrins - the next generation. Int J Nanomed 13:4003–4013. https://doi.org/10.2147/IJN.S153226

    Article  CAS  Google Scholar 

  • Mohamadi Zahedi S, Mansourpanah Y (2018) Construction of chitosan-carboxymethyl β-cyclodextrin silver nanocomposite hydrogel to improve antibacterial activity. Plast, Rubber Compos 47:273–281. https://doi.org/10.1080/14658011.2018.1475166

    Article  CAS  Google Scholar 

  • Mohammed H, Kumar A, Bekyarova E, Al-Hadeethi Y, Zhang X, Chen M, et al (2020) AntAntimicrobial mechanisms and effectiveness of graphene and graphene-functionalized biomaterials. A scope review. Front Bioeng Biotechnol 8:465

    Article  PubMed  PubMed Central  Google Scholar 

  • Naderi P, Zarei M, Karbasi S, Salehi H (2020) Evaluation of the effects of keratin on physical, mechanical and biological properties of poly (3-hydroxybutyrate) electrospun scaffold: potential application in bone tissue engineering. Eur Polym J 124:109502. https://doi.org/10.1016/j.eurpolymj.2020.109502

    Article  CAS  Google Scholar 

  • Nanda SS, Yi DK, Kim K (2016) Study of antibacterial mechanism of graphene oxide using Raman spectroscopy. Sci Rep 6:28443. https://doi.org/10.1038/srep28443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak AK, Das B (2018). 1 - Introduction to polymeric gels. In K. Pal, & I. Banerjee (Eds.), Polymeric Gels (pp. 3–27): Woodhead Publishing.

  • Nguyen TP, Nguyen QV, Nguyen V-H, Le T-H, Huynh VQN, Vo D-VN et al (2019) Silk fibroin-based biomaterials for biomedical applications: a review. Polymers 11:1933. https://doi.org/10.3390/polym11121933

    Article  CAS  PubMed Central  Google Scholar 

  • Paajanen A, Ceccherini S, Maloney T, Ketoja JA (2019) Chirality and bound water in the hierarchical cellulose structure. Cellulose 26:5877–5892. https://doi.org/10.1007/s10570-019-02525-7

    Article  CAS  Google Scholar 

  • Palazzo C, Trapani G, Ponchel G, Trapani A, Vauthier C (2017) Mucoadhesive properties of low molecular weight chitosan-or glycol chitosan-and corresponding thiomer-coated poly (isobutylcyanoacrylate) core-shell nanoparticles. Eur J Pharm Biopharm 117:315–323

    Article  CAS  PubMed  Google Scholar 

  • Pallavicini P, Arciola CR, Bertoglio F, Curtosi S, Dacarro G, D’Agostino A et al (2017) Silver nanoparticles synthesized and coated with pectin: an ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. J Colloid Interface Sci 498:271–281. https://doi.org/10.1016/j.jcis.2017.03.062

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Do JY, Kim J, Kang M (2020) Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr Polym 230:115597. https://doi.org/10.1016/j.carbpol.2019.115597

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Dhyani V, Kaur T, Singh N (2020) Spatiotemporal control over cell proliferation and differentiation for tissue engineering and regenerative medicine applications using silk fibroin scaffolds. ACS Appl Bio Mater 6:3476–3493

    Article  CAS  Google Scholar 

  • Pietrucha K (2005) Changes in denaturation and rheological properties of collagen–hyaluronic acid scaffolds as a result of temperature dependencies. Int J Biol Macromol 36:299–304

    Article  CAS  PubMed  Google Scholar 

  • Pooresmaeil M, Namazi H (2019) Preparation and characterization of polyvinyl alcohol/β-cyclodextrin/GO-Ag nanocomposite with improved antibacterial and strength properties. Polym Adv Technol 30:447–456

    Article  CAS  Google Scholar 

  • Pouget C, Dunyach-Remy C, Pantel A, Schuldiner S, Sotto A, Lavigne J-P (2020) Biofilms in diabetic foot ulcers: significance and clinical relevance. Microorganisms 8:1580

    Article  PubMed Central  Google Scholar 

  • Ran X, Du Y, Wang Z, Wang H, Pu F, Ren J et al (2017) Hyaluronic acid-templated Ag nanoparticles/graphene oxide composites for synergistic therapy of bacteria infection. ACS Appl Mater Interfaces 9:19717–19724

    Article  CAS  PubMed  Google Scholar 

  • Roig-Sanchez S, Jungstedt E, Anton-Sales I, Malaspina DC, Faraudo J, Berglund LA et al (2019) Nanocellulose films with multiple functional nanoparticles in confined spatial distribution. [10.1039/C8NH00310F]. Nanoscale Horizons 4:634–641. https://doi.org/10.1039/C8NH00310F

    Article  CAS  Google Scholar 

  • Sandri G, Miele D, Faccendini A, Bonferoni MC, Rossi S, Grisoli P et al (2019) Chitosan/glycosaminoglycan scaffolds: the role of silver nanoparticles to control microbial infections in wound healing. Polymers 11:1207

    Article  CAS  PubMed Central  Google Scholar 

  • Sapru S, Das S, Mandal M, Ghosh AK, Kundu SC (2018) Prospects of nonmulberry silk protein sericin-based nanofibrous matrices for wound healing–in vitro and in vivo investigations. Acta Biomater 78:137–150

    Article  CAS  PubMed  Google Scholar 

  • Shaheen TI, El-Naggar ME, Hussein JS, El-Bana M, Emara E, El-Khayat Z et al (2016) Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomed Pharmacother 83:865–875. https://doi.org/10.1016/j.biopha.2016.07.052

    Article  CAS  PubMed  Google Scholar 

  • Shahzad A, Khan A, Afzal Z, Umer MF, Khan J, Khan GM (2019) Formulation development and characterization of cefazolin nanoparticles-loaded cross-linked films of sodium alginate and pectin as wound dressings. Int J Biol Macromol 124:255–269

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Wang B, Li J, Jansen JA, Walboomers XF, Yang F (2019) Antibacterial effect and wound healing ability of silver nanoparticles incorporation into chitosan-based nanofibrous membranes. Mater Sci Eng, C 98:1053–1063. https://doi.org/10.1016/j.msec.2019.01.073

    Article  CAS  Google Scholar 

  • Sierra-Sánchez Á, Fernández-González A, Lizana-Moreno A, Espinosa-Ibáñez O, Martinez-Lopez A, Guerrero-Calvo J, et al (2020) Hyaluronic acid biomaterial for human tissue-engineered skin substitutes: preclinical comparative in vivo study of wound healing. J Eur Acad Dermatol Venereol 34:2414–2427

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Pandit S, Jers C, Joshi AS, Garnæs J, Mijakovic I (2021) Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Sci Rep 11:12619. https://doi.org/10.1038/s41598-021-92006-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens L, de Barros Dias MCH, Arantes PR, Gnoatto J, Raabe M, Moura DJ (2020). Modified polysaccharides in wound healing. In Tailor-Made Polysaccharides in Biomedical Applications (pp. 225–258): Elsevier.

  • Tan BY, Nguyen LTH, Kim HS, Kim JH, Ng KW (2017) Cultivation of human dermal fibroblasts and epidermal keratinocytes on keratin-coated silica bead substrates. J Biomed Mater Res, Part A 105:2789–2798

    Article  CAS  Google Scholar 

  • Tao G, Cai R, Wang Y, Liu L, Zuo H, Zhao P et al (2019) Bioinspired design of AgNPs embedded silk sericin-based sponges for efficiently combating bacteria and promoting wound healing. Mater Des 180:107940. https://doi.org/10.1016/j.matdes.2019.107940

    Article  CAS  Google Scholar 

  • Taran M, Rad M, Alavi M (2016) Characterization of Ag nanoparticles biosynthesized by Bacillus sp. HAI4 in different conditions and their antibacterial effects. J Appl Pharmac Sci 6:094–099

    Article  CAS  Google Scholar 

  • Tian B, Hua S, Liu J (2020) Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: a review. Carbohydr Polym 232:115805. https://doi.org/10.1016/j.carbpol.2019.115805

    Article  CAS  PubMed  Google Scholar 

  • Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B (2020) Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12:735

    Article  CAS  PubMed Central  Google Scholar 

  • Usman A, Hussain Z, Riaz A, Khan AN (2016) Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr Polym 153:592–599. https://doi.org/10.1016/j.carbpol.2016.08.026

    Article  CAS  PubMed  Google Scholar 

  • Valentine ME, Kirby BD, Withers TR, Johnson SL, Long TE, Hao Y et al (2020) Generation of a highly attenuated strain of Pseudomonas aeruginosa for commercial production of alginate. Microb Biotechnol 13:162–175

    Article  CAS  PubMed  Google Scholar 

  • Vanitha G, Rajavel K, Boopathy G, Veeravazhuthi V, Neelamegam P (2017) Physiochemical charge stabilization of silver nanoparticles and its antibacterial applications. Chem Phys Lett 669:71–79. https://doi.org/10.1016/j.cplett.2016.11.037

    Article  CAS  Google Scholar 

  • Wan Y, Yang S, Wang J, Gan D, Gama M, Yang Z et al (2020) Scalable synthesis of robust and stretchable composite wound dressings by dispersing silver nanowires in continuous bacterial cellulose. Compos B Eng 199:108259. https://doi.org/10.1016/j.compositesb.2020.108259

    Article  CAS  Google Scholar 

  • Wang J, Xu J (2020) Effects of topical insulin on wound healing: a review of animal and human evidences. Diabetes, Metabolic Syndrome and Obesity: Targets Therapy 13:719–727. https://doi.org/10.2147/DMSO.S237294

    Article  Google Scholar 

  • Wang Y, Li P, Xiang P, Lu J, Yuan J, Shen J (2016) Electrospun polyurethane/keratin/AgNP biocomposite mats for biocompatible and antibacterial wound dressings. J Mater Chem B 4:635–648

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Zhang J, Zhou Y, Bei W, Li Y, Yuan Q et al (2017) Characterization of glabridin/hydroxypropyl-β-cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr Polym 159:152–160

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Mao C, Liu X, Zhang Y, Cui Z, Yang X et al (2017) Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating. ACS Appl Mater Interfaces 9:26417–26428

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Abdelgawad AM, El-Naggar ME, Rojas OJ (2016) Antibacterial activity of silver nanoparticles synthesized In-situ by solution spraying onto cellulose. Carbohydr Polym 147:500–508. https://doi.org/10.1016/j.carbpol.2016.03.029

    Article  CAS  PubMed  Google Scholar 

  • Yang X-R, Zhao Y-Q, Qiu Y-T, Chi C-F, Wang B (2019) Preparation and characterization of gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) bone stimulated by in vitro gastrointestinal digestion. Mar Drugs 17:78

    Article  CAS  PubMed Central  Google Scholar 

  • Ye D, Zhong Z, Xu H, Chang C, Yang Z, Wang Y et al (2016) Construction of cellulose/nanosilver sponge materials and their antibacterial activities for infected wounds healing. Cellulose 23:749–763. https://doi.org/10.1007/s10570-015-0851-4

    Article  CAS  Google Scholar 

  • You C, Li Q, Wang X, Wu P, Ho JK, Jin R et al (2017) Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep 7:10489. https://doi.org/10.1038/s41598-017-10481-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Peng M, Cheng T, Zhao P, Qiu L, Zhou J et al (2018) Silver nanoparticles-doped collagen–alginate antimicrobial biocomposite as potential wound dressing. J Mater Sci 53:14944–14952

    Article  CAS  Google Scholar 

  • Zhao X, Li Q, Ma X, Quan F, Wang J, Xia Y (2015) The preparation of alginate–AgNPs composite fiber with green approach and its antibacterial activity. J Ind Eng Chem 24:188–195. https://doi.org/10.1016/j.jiec.2014.09.028

    Article  CAS  Google Scholar 

  • Zhou W, Jia Z, Xiong P, Yan J, Li Y, Li M et al (2017) Bioinspired and biomimetic AgNPs/gentamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications. ACS Appl Mater Interfaces 9:25830–25846

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehran Alavi or Rajender S. Varma.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethics approval

This study has not reported the results of studies involving humans and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, M., Varma, R.S. Antibacterial and wound healing activities of silver nanoparticles embedded in cellulose compared to other polysaccharides and protein polymers. Cellulose 28, 8295–8311 (2021). https://doi.org/10.1007/s10570-021-04067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04067-3

Keywords

Navigation