Skip to main content

Advertisement

Log in

The role of fiber-matrix compatibility in vacuum processed natural fiber/epoxy biocomposites

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Utilization of raw natural fibers is a research topic of interest for achieving low-cost and ecofriendly composite materials with properties including low density and high specific strength. In order to obtain materials with these properties, matrix-reinforcement characteristics should be taken into account, as well as the processing method. Therefore, the aim of this research is the production of epoxy resin biocomposites by using three natural fibers as reinforcement, which helped to stablish the role of compatibility and vacuum level in the material’s mechanical properties. Fique, Fique-cotton and Moriche fibers were molded with epoxy resin at different vacuum pressures, resulting in materials with tensile strengths of 50.7 ± 1.3 MPa and 31.5 ± 0.5 MPa for Epoxy/Fique and Epoxy/Fique-Cotton biocomposites processed under a vacuum pressure of 0.4 bar, respectively. The best result for epoxy/moriche biocomposites was 31.5 ± 0.5 MPa at 0 bar. This demonstrated the differences in fiber-matrix compatibility and that applying high vacuum is not necessarily beneficial for achieving high performance biocomposites, as it is commonly the case for composites manufactured with synthetic fibers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alawar A, Hamed AM, Al-Kaabi K (2009) Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B Eng 40:601–606

    Article  Google Scholar 

  • Albano C, Gonzalez J, Ichazo M, Kaiser D (1999) Thermal stability of blends of polyolefins and sisal fiber. Polym Degrad Stab 66:179–190

    Article  CAS  Google Scholar 

  • Alvarez VA, Vázquez A (2006) Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Compos Part A Appl Sci Manuf 37:1672–1680

    Article  Google Scholar 

  • Barbosa ADP, Picanço Oliveira M, Altoé GR, et al (2015) Manufacturing of epoxy composites incorporated with Buriti fibers and evaluation of thermogravimetric behavior. In: Materials Science Forum. pp 460–465

  • Brambilla VC, Beltrami LVR, Pelegrini K et al (2017) Development and characterization of PLA/buriti fibre composites-influence of fibre and coupling agent contents. Polym Polym Compos 25:143–152. https://doi.org/10.1177/096739111702500204

    Article  CAS  Google Scholar 

  • da Cruz Demosthenes LC, Nascimento LFC, Oliveira MS et al (2019) Evaluation of buriti fabric as reinforcement of polymeric matrix composite for ballistic application as multilayered armor system. In: Ikhmayies S, Li J, Vieira CMF, Margem JI, de Oliveira Braga F (eds) Green materials engineering. Springer, Cham, pp 177–183

    Chapter  Google Scholar 

  • De Rosa IM, Kenny JM, Puglia D et al (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122

    Article  Google Scholar 

  • Delvasto S, Toro EF, Perdomo F, de Gutiérrez RM (2010) An appropriate vacuum technology for manufacture of corrugated fique fiber reinforced cementitious sheets. Constr Build Mater 24:187–192. https://doi.org/10.1016/j.conbuildmat.2009.01.010

    Article  Google Scholar 

  • Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43:1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  • Espinosa WJM, Valencia BAR, Contreras GGM (2019) Physical-mechanical characterization of Moriche natural fibre (Mauritia flexuosa) and composite with bio-epoxy resin. J Mech Eng 65:181–188. https://doi.org/10.5545/sv-jme.2018.5730

    Article  Google Scholar 

  • Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  • Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr Polym 106:77–83. https://doi.org/10.1016/j.carbpol.2014.02.016

    Article  CAS  PubMed  Google Scholar 

  • Fiore V, Scalici T, Nicoletti F et al (2016) A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos Part B Eng 85:150–160. https://doi.org/10.1016/j.compositesb.2015.09.028

    Article  CAS  Google Scholar 

  • George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485

    Article  CAS  Google Scholar 

  • Khan GMA, Shaheruzzaman M, Rahman MH et al (2009) Surface modification of okra bast fiber and its physico-chemical characteristics. Fibers Polym 10:65–70

    Article  Google Scholar 

  • Li Y, Pickering KL, Farrell RL (2009) Analysis of green hemp fibre reinforced composites using bag retting and white rot fungal treatments. Ind Crops Prod 29:420–426. https://doi.org/10.1016/j.indcrop.2008.08.005

    Article  CAS  Google Scholar 

  • Linares E., Galeano G, García N, Figueroa Y (2008) Fibras vegetales utilizadas en artesanías en Colombia

  • Liu W, Mohanty AK, Drzal LT et al (2004) Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. J Mater Sci 39:1051–1054

    Article  CAS  Google Scholar 

  • Liu D, Han G, Huang J, Zhang Y (2009) Composition and structure study of natural Nelumbo nucifera fiber. Carbohydr Polym 75:39–43

    Article  CAS  Google Scholar 

  • Monteiro SN, de Assis FS, Ferreira CL et al (2018) Fique fabric: a promising reinforcement for polymer composites. Polymers (basel) 10:1–10. https://doi.org/10.3390/polym10030246

    Article  CAS  Google Scholar 

  • Oliveira MS, da Luz FS, Pereira AC et al (2020) Tensile properties of epoxy matrix reinforced with fique fabric. Mater Sci Forum 1012:14–19

    Article  Google Scholar 

  • Paiva MC, Ammar I, Campos AR et al (2007) Alfa fibres: mechanical, morphological and interfacial characterization. Compos Sci Technol 67:1132–1138

    Article  CAS  Google Scholar 

  • Pereira AC, de Assis FS, da Costa Garcia Filho F et al (2019) Ballistic performance of multilayered armor with intermediate polyester composite reinforced with fique natural fabric and fibers. J Mater Res Technol 8:4221–4226

    Article  CAS  Google Scholar 

  • Portela TGR, da Costa LL, Santos NSS et al (2010) Tensile behavior of lignocellulosic fiber reinforced polymer composites: part ii buriti petiole/polyester. Rev Mater 15:216–222. https://doi.org/10.1590/s1517-70762010000200016

    Article  CAS  Google Scholar 

  • Rana S, Fangueiro R (2016) Fibrous and textile materials for composite applications. Springer

    Book  Google Scholar 

  • Sanjay MR, Siengchin S, Parameswaranpillai J et al (2018) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr Polym 207:108–121. https://doi.org/10.1016/j.carbpol.2018.11.083

    Article  CAS  Google Scholar 

  • Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol J Polym Process Inst 18:351–363

    Article  CAS  Google Scholar 

  • Sarikaya E, Çallioğlu H, Demirel H (2019) Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Compos Part B Eng 167:461–466. https://doi.org/10.1016/j.compositesb.2019.03.020

    Article  CAS  Google Scholar 

  • Satyanarayana KG, Sukumaran K, Mukherjee PS et al (1990) Natural fibre-polymer composites. Cem Concr Compos 12:117–136. https://doi.org/10.1016/0958-9465(90)90049-4

    Article  CAS  Google Scholar 

  • Seki Y, Sarikanat M, Sever K, Durmuşkahya C (2013) Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Compos Part B Eng 44:517–523

    Article  CAS  Google Scholar 

  • Seyam A-FM, Monteiro AS, Midani M, Baruque-Ramos J (2017) Effect of structural parameters on the tensile properties of multilayer 3D composites from Tururi palm tree (Manicaria saccifera Gaertn) fibrous@inproceedings{barbosa2015manufacturing, title={Manufacturing of epoxy composites incorporated with Buriti fibe. Compos Part B Eng 111:17–26. https://doi.org/10.1016/j.compositesb.2016.11.040

    Article  CAS  Google Scholar 

  • Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A Appl Sci Manuf 39:1632–1637

    Article  Google Scholar 

  • Shah DU (2014) Natural fibre composites: comprehensive ashby-type materials selection charts. Mater Des 62:21–31. https://doi.org/10.1016/j.matdes.2014.05.002

    Article  CAS  Google Scholar 

  • Shahinur S, Hasan M (2020) Natural fiber and synthetic fiber composites: comparison of properties, performance, cost and environmental benefits. In: Hashmi S, Choudhury IA (eds) Encyclopedia of renewable and sustainable materials. Elsevier, Oxford, pp 794–802

    Chapter  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (basel) 2:728–765. https://doi.org/10.3390/polym2040728

    Article  CAS  Google Scholar 

  • Sreenivasan VS, Ravindran D, Manikandan V, Narayanasamy R (2011) Mechanical properties of randomly oriented short Sansevieria cylindrica fibre/polyester composites. Mater Des 32:2444–2455. https://doi.org/10.1016/j.matdes.2010.11.042

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Colombia Scientific Program within the framework of the call Ecosistema Científico (Contract No. FP44842- 218-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ramirez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors agreed to the publication in the submitted form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pabón Rojas, J.J., Ramón Valencia, B.A., Bolívar Osorio, F.J. et al. The role of fiber-matrix compatibility in vacuum processed natural fiber/epoxy biocomposites. Cellulose 28, 7845–7857 (2021). https://doi.org/10.1007/s10570-021-04055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04055-7

Keywords

Navigation