Skip to main content
Log in

Cellulose cryogels prepared by regeneration from phosphoric acid solutions

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The supermacroporous structure and ease of preparation of polysaccharide-based cryogels have led to their wide use in many areas and make them promising biomaterials for tissue engineering. One polysaccharide of particular interest for the production of tissue engineering scaffolds is cellulose, a natural biocompatible and nontoxic polymer. However, the complex supramolecular structure of cellulose creates difficulties in its dissolution and further processing into biomedical products. Conventional cellulose solvents have significant disadvantages, including poor removal from the resulting products. Therefore, this work proposes the preparation of cellulose-based cryogels using orthophosphoric acid, which can be easily removed and recovered. The effect of cellulose dissolution conditions on the structure and properties of cryogels were studied. Highly porous (88.3–93.4%) and light (ρ 0.091–0.161 g/cm3) cryogels with complex hierarchical morphologies were produced using a dissolution temperature of (20 ± 2) °C, a cellulose concentration in the solution > 3%, a dissolution time of 24–48 h (depending on the cellulose concentration), and precipitation with water or acetone. 13C CP-MAS NMR spectroscopy results confirmed that the regenerated cellulose is predominantly amorphous, with a crystallinity of 6.8–30.6% in the structure of cellulose II. The compressive modulus E for cryogels was from 330 to 3675 kPa. FTIR spectroscopy results showed that the regenerated cellulose had an increased number of aldehyde groups and a decreased number of hydrogen bonds decreases, indicating a decrease in crystallinity. No phosphoric acid esters of cellulose were detected in the cryogels by FTIR spectroscopy. These results pave the way for the easy preparation of biomaterials for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baimenov A, Berillo DA, Poulopoulos SG, Inglezakis VJ (2020) A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions. Adv Colloid Interface Sci 276:102088. https://doi.org/10.1016/j.cis.2019.102088

    Article  CAS  PubMed  Google Scholar 

  • Boerstoel H, Maatman H, Westerink J, Koenders B (2001) Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42:7371–7379

    Article  CAS  Google Scholar 

  • Buchtová N, Pradille C, Bouvard J-L, Budtova T (2019) Mechanical properties of cellulose aerogels and cryogels. Soft matter 15:7901–7908

    Article  Google Scholar 

  • Buchtova N, Budtova T (2016) Cellulose aero-, cryo-and xerogels: towards understanding of morphology control. Cellulose 23:2585–2595

    Article  CAS  Google Scholar 

  • Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121. https://doi.org/10.1007/s10570-018-2189-1

    Article  CAS  Google Scholar 

  • Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55

    Article  CAS  Google Scholar 

  • Chen X-Q, Deng X-Y, Shen W-H, Jia M-Y (2018) Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohydr Polym 181:879–884

    Article  CAS  Google Scholar 

  • Ciolacu D, Rudaz C, Vasilescu M, Budtova T (2016) Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release. Carbohydr Polym 151:392–400

    Article  CAS  Google Scholar 

  • Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogels. Carbohydr Polym 122:293–300

    Article  CAS  Google Scholar 

  • Discher DE, Janmey P, Wang Y-l (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139. https://doi.org/10.1126/science.1116995

    Article  CAS  PubMed  Google Scholar 

  • Dobritoiu R, Patachia S (2013) A study of dyes sorption on biobased cryogels. Appl Surf Sci 285:56–64. https://doi.org/10.1016/j.apsusc.2013.07.164

    Article  CAS  Google Scholar 

  • Druel L, Niemeyer P, Milow B, Budtova T (2018) Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chemistry 20:3993–4002

    Article  CAS  Google Scholar 

  • El-Naggar ME, Othman SI, Allam AA, Morsy OM (2020) Synthesis drying process and medical application of polysaccharide-based aerogels. Int J Biol Macromol 145:1115–1128

    Article  CAS  Google Scholar 

  • Engler AJ, Rehfeldt F, Sen S, Discher DE (2007) Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Methods Cell Biol. https://doi.org/10.1016/S0091-679X(07)83022-6

    Article  PubMed  Google Scholar 

  • Fu J, Wang S, He C, Lu Z, Huang J, Chen Z (2016) Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold. Carbohyd Polym 147:89–96

    Article  CAS  Google Scholar 

  • Ganesan K, Dennstedt A, Barowski A, Ratke L (2016) Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Mater Des 92:345–355

    Article  CAS  Google Scholar 

  • Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromol 10:1188–1194

    Article  CAS  Google Scholar 

  • Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410

    Article  CAS  Google Scholar 

  • Grinshpan DD, Gonchar AN, Savitskaya TA, Tsygankova NG, Makarevich SE (2014) Regenerated cellulose fiber production from cellulose solutions in orthophosphoric acid Proceedings of the National Academy of Sciences of Belarus Chemical series:115–118

  • Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polímeros 15:84–90

    Article  CAS  Google Scholar 

  • Henniges U, Schiehser S, Rosenau T, Potthast A (2010) Cellulose solubility: dissolution and analysis of" problematic" cellulose pulps in the solvent system DMAc/LiCl. In: Liebert TF, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS Publications, pp 165–177

    Chapter  Google Scholar 

  • Hermanutz F, Gähr F, Uerdingen E, Meister F, Kosan B (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp 262:23–27

    Article  CAS  Google Scholar 

  • Hesse S, Jäger C (2005) Determination of the 13C chemical shift anisotropies of cellulose I and cellulose II. Cellulose 12:5–14

    Article  CAS  Google Scholar 

  • Hixon KR, Lu T, Sell SA (2017) A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 62:29–41

    Article  CAS  Google Scholar 

  • Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    Article  CAS  Google Scholar 

  • Jerosch H, Lavédrine B, Cherton JC (2001) Study of the stability of cellulose-holocellulose solutions in N, N-dimethylacetamide-lithium chloride by size exclusion chromatography. J Chromatogr A 927(1–2):31–38. https://doi.org/10.1016/s0021-9673(01)01094-9

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Yang D, Zhou Y, Ma G, Nie J (2008) Photocrosslinked electrospun chitosan-based biocompatible nanofibers. J Appl Polym Sci 109:3337–3343. https://doi.org/10.1002/app.28371

    Article  CAS  Google Scholar 

  • Korhonen O, Budtova T (2020) All-cellulose composite aerogels and cryogels. Compos Part A Appl Sci Manuf 137:106027. https://doi.org/10.1016/j.compositesa.2020.106027

    Article  CAS  Google Scholar 

  • Koshy ST, Zhang DKY, Grolman JM, Stafford AG, Mooney DJ (2018) Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomater 65:36–43. https://doi.org/10.1016/j.actbio.2017.11.024

    Article  CAS  PubMed  Google Scholar 

  • Lazzari LK, Zampieri VB, Zanini M, Zattera AJ, Baldasso C (2017) Sorption capacity of hydrophobic cellulose cryogelssilanized by two different methods. Cellulose 24:3421–3431. https://doi.org/10.1007/s10570-017-1349-z

    Article  CAS  Google Scholar 

  • McCormick CL, Callais PA, Hutchinson BH Jr (1985) Solution studies of cellulose in lithium chloride and N N-dimethylacetamide. Macromolecules 18:2394–2401

    Article  CAS  Google Scholar 

  • Mohamed SMK, Ganesan K, Milow B, Ratke L (2015) The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads. RSC Adv 5:90193–90201

    Article  Google Scholar 

  • Omura T, Imagawa K, Kono K, Suzuki T, Minami H (2017) Encapsulation of either hydrophilic or hydrophobic substances in spongy cellulose particles. ACS Appl Mater Interfaces 9:944–949

    Article  CAS  Google Scholar 

  • Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13 C nuclear magnetic resonance. Cellulose 16:641–647

    Article  CAS  Google Scholar 

  • Pircher N et al (2016) Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 23:1949–1966

    Article  CAS  Google Scholar 

  • Potthast A, Rosenau T, Sixta H, Kosma P (2002) Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Lett 43:7757–7759

    Article  CAS  Google Scholar 

  • Ram B, Chauhan GS (2018) New spherical nanocellulose and thiol-based adsorbent for rapid and selective removal of mercuric ions. Chem Eng J 331:587–596

    Article  CAS  Google Scholar 

  • Rezaeeyazdi M, Colombani T, Memic A, Bencherif SA (2018) Injectable hyaluronic acid-co-gelatin cryogels for tissue-engineering applications. Materials (Basel). https://doi.org/10.3390/ma11081374

    Article  Google Scholar 

  • Rosenau T, Potthast A, Adorjan I, Hofinger A, Sixta H, Firgo H, Kosma P (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)–degradation processes and stabilizers. Cellulose 9:283–291

    Article  CAS  Google Scholar 

  • Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose−NaOH solutions. Biomacromolecules 4:259–264

    Article  CAS  Google Scholar 

  • Saylan Y, Denizli A (2019) Supermacroporous composite cryogels in biomedical applications. Gels 5:20

    Article  CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83:1766–1774

    Article  CAS  Google Scholar 

  • Shih T-Y et al (2018) Injectable, tough alginate cryogels as cancer vaccines. Adv Healthc Mater 7:1701469. https://doi.org/10.1002/adhm.201701469

    Article  CAS  Google Scholar 

  • Toledo PV, Martins BF, Pirich CL, Sierakowski MR, Neto ET, Petri DF (2019) Cellulose based cryogels as adsorbents for organic pollutants. Macromol Symp 383:1800013. https://doi.org/10.1002/masy.201800013

    Article  CAS  Google Scholar 

  • Trygg J, Fardim P, Gericke M, Mäkilä E, Salonen J (2013) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohyd Polym 93:291–299

    Article  CAS  Google Scholar 

  • Voon LK, Pang SC, Chin SF (2017) Porous cellulose beads fabricated from regenerated cellulose as potential drug delivery carriers. J Chem. https://doi.org/10.1155/2017/1943432

    Article  Google Scholar 

  • Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537

    Article  CAS  Google Scholar 

  • Wu Y et al (2015) Bio-inspired adhesion: fabrication of molecularly imprinted nanocomposite membranes by developing a hybrid organic–inorganic nanoparticles composite structure. J Membr Sci 490:169–178. https://doi.org/10.1016/j.memsci.2015.04.023

    Article  CAS  Google Scholar 

  • Zhang J et al (2009) Dissolution of microcrystalline cellulose in phosphoric acid—molecular changes and kinetics. Molecules 14:5027–5041

    Article  CAS  Google Scholar 

  • Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668

    Article  CAS  Google Scholar 

  • Zhang J, Wu J, Yu J, Zhang X, He J, Zhang J (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends materials chemistry. Frontiers 1:1273–1290

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Russian Foundation for Basic Research (project 19-33-60014) and performed using the equipment of the Shared Use of Equipment Center Arktika at Northern (Arctic) Federal University named after M.V. Lomonosov, Centre for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics of the Research Park of the Saint Petersburg State University. The authors are grateful to E.N. Vlasova for performing the FTIR spectroscopy analysis and to Dr. A.V. Dobrodumov for conducting the NMR studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury A. Skorik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyshkunova, I.V., Chukhchin, D.G., Gofman, I.V. et al. Cellulose cryogels prepared by regeneration from phosphoric acid solutions. Cellulose 28, 4975–4989 (2021). https://doi.org/10.1007/s10570-021-03851-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-03851-5

Keywords

Navigation