Skip to main content
Log in

Waterborne functionalization of cellulose nanofibrils with norbornenes and subsequent thiol-norbornene gelation to create robust hydrogels

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanofibrils (CNFs) produced through processes involving oxidation (e.g. TEMPO oxidation) present reactive groups that allow for straightforward modification in aqueous suspension. CNFs fabricated through mechanical refinement alone can be challenging to modify for subsequent reactions due to only having hydroxyl groups present on the surface. To address these issues, CNFs with only hydroxyl groups present were functionalized with norbornene groups in their native aqueous suspension to achieve up to 10% functionalization per anhydroglucose unit. Since quantification of surface functionalization of CNFs is challenging through most methods, a degradation and subsequent nuclear magnetic resonance analysis method was developed to quantify norbornene functionalization. The norbornene functionalized CNFs (nCNFs) were cross-linked through UV and thermally initiated thiol-ene click reactions to create robust CNF hydrogels. By varying the reaction conditions, hydrogels made from nCNFs and a dithiol cross-linker could achieve compression modulus values up to 25 kPa. The materials were stable in aqueous suspensions and the cross-linked hydrogels still exhibited shear thinning behavior with high recovery, which demonstrated that even though effective cross-links were formed, a complete network was not. Through this study, thiol-norbornene crosslinking of CNFs could create robust hydrogels and improve aqueous stability that could have applications in sustainable materials and biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azoidis I, Metcalfe J, Reynolds J, Keeton S, Hakki SS, Sheard J, Widera D (2017) Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels. MRS Commun 7:458–465

    Article  CAS  Google Scholar 

  • Balasubramanian N, Nelson S (2014) Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility. Int J Biol Macromol 67:132–139

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Celma G, Stromme M, Ferraz N (2018) In vitro and in vivo evaluation of the wound healing properties of nanofibrillated cellulose hydrogels. ACS Appl Bio Mater 1:1853–1863

    Article  CAS  Google Scholar 

  • Berto GL, Arantes V (2019) Kinetic changes in cellulose properties during defibrillation into microfibrillated cellulose and cellulose nanofibrils by ultra-refining. Int J Bio Macromol 127:637–648

    Article  CAS  Google Scholar 

  • Bhattacharya M, Malinen MM, Lauren P, Lou Y-R, Kuisma SW, Kanninen L, Niklander T, Noon J, Lille M, Corlu A, GuGuen-Guillouzo Ch, Ikkala O, Urtti A, Laukkanen A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164:291–298

    Article  CAS  PubMed  Google Scholar 

  • Bozic M, Vivod V, Kavcic S, Leitgeb M, Kokol V (2015) New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor. Carbohydr Polym 125:340–351

    Article  CAS  PubMed  Google Scholar 

  • Brown TE, Anseth KS (2017) Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem Soc Rev 46:6532–6552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caliari SR, Vega SL, Kwon M, Soulas EM, Burdick JA (2016) Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 103:314–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campodoni E, Heggset EB, Rashad A, Ramirez-Rodriguez GB, Mustafa K, Syverud K, Tampieri A, Sandri M (2019) Polymeric 3D scaffolds for tissue regeneration: Evaluation of biopolymer nanocomposite reinforced with cellulose nanofibrils. Mater Sci Eng C 94:867–878

    Article  CAS  Google Scholar 

  • Chin K-M, Ting SS, Ong HL, Omar M (2018) Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: a review. J Appl Polym Sci 2018:46065

    Article  Google Scholar 

  • Courtenay JC, Ramalhete SM, Skuze WJ, Soni R, Khimyak YZ, Edler KJ, Scott JL (2018) Unravelling cationic cellulose nanofibril hydrogel structure: NMR spectroscopy and small angle neutron scattering analyses. Soft Matter 14:255–263

    Article  CAS  PubMed  Google Scholar 

  • Curvello R, Raghuwanshi VS, Garnier G (2019) Engineering nanocellulose hydrogels for biomedical applications. Adv Colloid Interface Sci 267:47–61

    Article  CAS  PubMed  Google Scholar 

  • Dadoo N, Landry SB, Bomar JD, Gramlich WM (2017) Synthesis and spatiotemporal modification of biocompatible and stimuli responsive carboxymethyl cellulose hydrogels using thiol-norbornene chemistry. Macromol Biosci 17:1700107

    Article  Google Scholar 

  • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Article  Google Scholar 

  • Deng S, Binauld S, Mangiante G, Frances JM, Charlot J, Bernard J, Zhou X, Fleury E (2016) Microcrystalline cellulose as reinforcing agent in silicone elastomers. Carbohydr Polym 151:899–906

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Jung J, Simonsen J, Zhao Y (2017) Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate). Food Chem 232:359–368

    Article  CAS  PubMed  Google Scholar 

  • Diniz F, Castro G (2004) Hornification—its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494

    Article  Google Scholar 

  • Doench I, Torres-Ramos MEW, Montembault A, de Olveira PN, Halimi C, Viguier E, Heux L, Siadous R, Thire RMSM, Osorio-Madrazo A (2018) Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering. Polymers 10:1202

    Article  PubMed Central  Google Scholar 

  • Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromol 14(9):3338–3345

    Article  CAS  Google Scholar 

  • Erlandsson J, Pettersson T, Ingverud T, Granberg H, Larsson PA, Malkoch M, Wagberg L (2018) On the mechanism behind freezing-induced chemical cross-linking in ice-templated cellulose nanofibril aerogels. J Mater Chem A 6:19371–19380

    Article  CAS  Google Scholar 

  • Espinosa E, Rol F, Bras J, Rodriguez A (2019) Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. J Clean Prod 239:118083

    Article  CAS  Google Scholar 

  • Fein K, Bousfield DW, Gramlich WM (2020) The influence of versatile thiol-norbornene modifications to cellulose nanofibers on rheology and film properties. Carbohydr Polym 230:115672

    Article  CAS  PubMed  Google Scholar 

  • Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromol 11:1060–1066

    Article  CAS  Google Scholar 

  • Fu L-H, Qi C, Ma M-G, Wan P (2019) Multifunctional cellulose-based hydrogels for biomedical applications. J Mater Chem B 7:1541–1562

    Article  CAS  PubMed  Google Scholar 

  • Gordeyeva KS, Fall AB, Hall S, Wicklein B, Bergstrom L (2016) Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation. J Colloid Interface Sci 472:44–51

    Article  CAS  PubMed  Google Scholar 

  • Gramlich WM, Kim IL, Burdick JA (2013) Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34:9803–9811

    Article  CAS  PubMed  Google Scholar 

  • Heggset EB, Strand BL, Sundby KW, Simon S, Chinga CG, Syverud K (2019) Viscoelastic properties of nanocellulose based inks for 3D printing and mechanical properties of CNF/alginate biocomposite gels. Cellulose 26:581–595

    Article  CAS  Google Scholar 

  • Hoeng F, Denneulin A, Krosnicki G, Bras J (2016) Positive impact of cellulose nanofibrils on silver nanowire coatings for transparent conductive films. J Mater Chem C 4:10945–10954

    Article  CAS  Google Scholar 

  • Hossen MR, Dadoo N, Holomakoff DG, Co A, Gramlich WM, Mason MD (2018) Wet stable and mechanically robust cellulose nanofibrils (CNF) based hydrogel. Polymer 151:231–241

    Article  CAS  Google Scholar 

  • Jivan F, Yegappan R, Pearce H, Carrow JK, McShane M, Gaharwar AK, Alge DL (2016) Sequential thiol-ene and tetrazine click reactions for the polymerization and functionalization of hydrogel microparticles. Biomacromol 17:3516–3523

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A, Thomas S, Galeski A (2018) Recent developments in nanocellulose-based biodegradablepolymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci 87:197–227

    Article  CAS  Google Scholar 

  • Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen MS (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19:1807–1819

    Article  CAS  Google Scholar 

  • Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornifcation. Cellulose 6:23–40

    Article  CAS  Google Scholar 

  • Khalil HPSA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydr Polym 99:649–665

    Article  PubMed  Google Scholar 

  • Kong W, Wang C, Jia C, Kuang Y, Pastel G, Chen C, Chen G, He S, Huang H, Zhang J, Wang S, Hu L (2018) Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv Mater 30:1801934

    Article  Google Scholar 

  • Kuzmenkoa V, Karabuluta E, Pernevikc E, Enokssona P, Gatenholma P (2018) Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines. Carbohydr Polym 189:22–30

    Article  Google Scholar 

  • Lin C-C, Ki CS, Shih H (2015) Thiol-norbornene photoclick hydrogels for tissue engineering applications. J Appl Polym Sci 132:41563

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chinga-Carrasco G, Cheng F, Xu W, Willfor S, Syverud K, Xu C (2016) Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 23:3129–3143

    Article  CAS  Google Scholar 

  • Lojewska J, Miskowiec P, Lojewski T, Proniewicz LM (2005) Cellulose oxidative and hydrolytic degradation: In situ FTIR approach. Polym Degrad Stability 88:512–520

    Article  CAS  Google Scholar 

  • Lotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studied of macrofibrillar cellulose water dispersions. J Polym Environ 19:137–145

    Article  Google Scholar 

  • Lou Y-R, Kanninen L, Kuisma T, Niklander J, Noon LA, Burks D, Urtti A, Yliperttula M (2014) The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Devel 23(4):380–392

    Article  CAS  Google Scholar 

  • Mandels M, Hontz L, Nystrom J (1974) Enzymatic hydrolysis of waste cellulose. Biotechnol Bioeng 16:1471–1493

    Article  CAS  Google Scholar 

  • Mansfield S, Meder R (2003) Cellulose hydrolysis—the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10:159–169

    Article  CAS  Google Scholar 

  • Mariano M, Hantao LW, da Silva BJ, Strauss M (2018) Microstructural characterization of nanocellulose foams prepared in the presence of cationic surfactants. Carbohydr Polym 195:153–162

    Article  CAS  PubMed  Google Scholar 

  • Martin-Martinez F, Jin K, Lopez Barreiro D, Buehler MJ (2018) The rise of hierarchical nanostructured materials from renewable sources: learning from nature. ACS Nano 12:7425–7433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Sampedro R, Filpponen I, Hoeger IC, Zhu JY, Laine J, Rojas OJ (2012) Rapid and complete enzyme hydrolysis of lignocellulosic nanofibrils. ACS Macro Letters 1:1321–1325

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Pierron D, Harmand M-FO (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for use as ligament or tendon substitutes. Carbohydr Polym 87:2291–2298

    Article  CAS  Google Scholar 

  • McCall JD, Anseth KS (2012) Thiol-ene photopolymerizations provide a facile method to encapsulate proteins and maintain their bioactivity. Biomacromol 13:2410–2417

    Article  CAS  Google Scholar 

  • McOscar TVC, Gramlich WM (2018) Hydrogels from norbornene-functionalized carboxymethyl cellulose using a UV-initiated thiol-ene click reaction. Cellulose 25:6531–6545

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68:2383–2394

    Article  CAS  Google Scholar 

  • Navarro JRG, Edlund U (2017) Surface-initiated controlled radical polymerization approach to enhance nanocomposite integration of cellulose nanofibrils. Biomacromol 18:1947–1955

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50:531–541

    Article  CAS  Google Scholar 

  • Nishiguchi A, Taguchi T (2019) Osteoclast-responsive, injectable bone of bisphosphonated-nanocellulose that regulates osteoclast/osteoblast activity for bone regeneration. Biomacromol 20:1385–1393

    Article  CAS  Google Scholar 

  • Niu J, Wang J, Dai X, Shao Z, Huang X (2018) Dual physically cross-linked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties. Carbohydr Polym 193:73–81

    Article  CAS  PubMed  Google Scholar 

  • Oksman K, Mathew AP, Sain M (2009) Novel bionanocomposites: processing, properties and potential applications. Plast Rubbers Compos 38(9–10):396–405

    Article  CAS  Google Scholar 

  • Ooi HW, Hafeez S, van Blitterswijk CA, Moroni L, Baker MB (2017) Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration. Mater Horiz 4:1020–1040

    Article  CAS  Google Scholar 

  • Otoni CG, Carvalho AS, Cardoso MVC, Bernardinelli OD, Lorevice MV, Colnago LA, Loh W, Mattoso LHC (2018) High-pressure microfluidization as a green tool for optimizing the mechanical performance of all-cellulose composites. ACS Sustain Chem Eng 6:12727–12735

    Article  CAS  Google Scholar 

  • Rashad A, Mustafa K, Heggset EB, Syverud K (2017) Cytocompatibility of wood-derived cellulose nanofibril hydrogels with different surface chemistry. Biomacromol 18:1238–1248

    Article  CAS  Google Scholar 

  • Rodell CB, Kaminski AL, Burdick JA (2013) Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromol 14(11):4125–4134

    Article  CAS  Google Scholar 

  • Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polymer Sci 88:241–264

    Article  CAS  Google Scholar 

  • Saini S, Falco CY, Belgacem MN, Bras J (2016) Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces. Carbohydr Polym 135:239–247

    Article  CAS  PubMed  Google Scholar 

  • Salari M, Bitounis D, Bhattacharya K, Pyrgiotakis G, Zhang Z, Purington E, Gramlich WM, Grondin Y, Rogers R, Bousfield D, Demokritou P (2019) Development and characterization of fluorescently tagged nanocellulose for nanotoxicological studies. Environ Sci Nano 6:1516–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satyamurthy P, Jain P, Karande VS, Nadanathangam V (2016) Nanocellulose induces cellulase production in Trichoderma reesei. Process Biochem 51:1452–1457

    Article  CAS  Google Scholar 

  • Sharma PR, Zheng B, Sharma SK, Zhan CZ, Wang R, Bhatia SR, Hsiao BS (2018) High Aspect ratio carboxycellulose nanofibers prepared by nitro-oxidation method and their nanopaper properties. ACS Appl Nano Mater 1:3969–3980

    Article  CAS  Google Scholar 

  • Shinner F, Von Mersi W (1990) Xylanase-CM-cellulase—and invertase activity in soil: an improved method. Soil Boil Biochem 22(4):511–515

    Article  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  • Syverud K, Kirsebom H, Hajizadeh S, Chinga-Carrasco G (2011) Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels. Nanoscale Res Lett 6:626

    Article  PubMed  PubMed Central  Google Scholar 

  • Syverud K, Pettersen SR, Draget K, Chinga-Carrasco G (2015) Controlling the elastic modulus of cellulose nanofibril hydrogels-scaffolds with potential in tissue engineering. Cellulose 22:473–481

    Article  CAS  Google Scholar 

  • Tomic S, Kokol V, Mihajlovic D, Mircic A, Colic M (2016) Native cellulose nanofibrills induce immune tolerance in vitro by acting on dendritic cells. Sci Rep 6:31618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinzant TB, Adney WS, Decker SR, Baker JO, Kinter MT, Sherman NE, Fox JW, Himmel ME (2001) Fingerprinting trichoderma reesei hydrolases in a commercial cellulase preparation. Appl Biochem Biotech 91–93:99–107

    Article  Google Scholar 

  • Vuoti S, Talja R, Johansson L-S, Heikkinen H, Tammelin T (2013) Solvent impact on esterification and film formation ability of nanofibrillated cellulose. Cellulose 20:2359–2370

    Article  CAS  Google Scholar 

  • Wang L, Sanders JE, Gardner DG, Han Y (2016) In-situ modification of cellulose nanofibrils by organosilanes during spray drying. Industrial Crops Prod 93:129–135

    Article  Google Scholar 

  • Wang J, Hua B, Wang X, Cui Z (2017) Characteristics of cellulase in cellulose-degrading Bacterium strain Clostridium straminisolvens (CSK1). Afr J Microbiol Res 11(10):414–421

    Article  CAS  Google Scholar 

  • Xu W, Molino BZ, Cheng F, Molino PJ, Yue Z, Su D, Wang X, Willfor S, Xu C, Wallace GG (2019) On low-concentration inks formulated by nanocellulose assisted with gelatin methacrylate (GelMA) for 3D printing toward wound healing application. ACS Appl Mater Interfaces 11:8838–8848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Zhang X, Yang P, Langvik O, Wang X, Zhang Y, Cheng F, Osterberg M, Willfor S, Xu C (2019) Surface engineered biomimetic inks based on UV cross-linkable wood biopolymers for 3D printing. ACS Appl Mater Interfaces 11:2389–12400

    Google Scholar 

  • Yang J, Xu F (2017) Synergistic reinforcing mechanisms in cellulose nanofibrils composite hydrogels: interfacial dynamics, energy dissipation, and damage resistance. Biomacromol 18:2623–2632

    Article  CAS  Google Scholar 

  • Yang X, Abe K, Biswas SK, Yano H (2018) Extremely stiff and strong nanocomposite hydrogels with stretchable cellulose nanofiber/poly(vinyl alcohol) networks. Cellulose 25:6571–6580

    Article  CAS  Google Scholar 

  • Yuan B, Zhang J, Mi Q, Yu J, Song R, Zhang J (2017) Transparent cellulose-silica composite aerogels with excellent flame retardancy via an in situ sol-gel process. ACS Sustainable Chemistry & Engineering 5:11117–11123

    Article  CAS  Google Scholar 

  • Zander NE, Dong H, Steele J, Grant JT (2014) Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates. ACS Appl Mater Interfaces 6(21):18502–18510

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Lyu S, Zhou X, Gu H, Ma C, Wang C, Ding T, Shao Q, Liu H, Guo Z (2019) Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption. J Colloid Interface Sci 536:245–251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Science Foundation funded REU Site Explore it! Building the Next Generation of Sustainable Forest Bioproduct Researchers (EEC-1461116 and EEC- 1757529) and University of Maine Research Reinvestment Fund support through the Vice President for Research at the University of Maine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Gramlich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadoo, N., Zeitler, S., McGovern, A.D. et al. Waterborne functionalization of cellulose nanofibrils with norbornenes and subsequent thiol-norbornene gelation to create robust hydrogels. Cellulose 28, 1339–1353 (2021). https://doi.org/10.1007/s10570-020-03582-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03582-z

Keywords

Navigation