Skip to main content

Advertisement

Log in

A flexible sandwich-structured supercapacitor with poly(vinyl alcohol)/H3PO4-soaked cotton fabric as solid electrolyte, separator and supporting layer

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Textile-based flexible supercapacitors have attracted tremendous attention due to their great potentials in wearable electronics. It is highly desirable to develop facile methods, which are compatible with conventional textile industry, for the fabrication of high-performance and ultra-flexible textile-supported supercapacitors. Herein, a sandwich-structured supercapacitor with a poly(vinyl alcohol)/H3PO4-soaked cotton fabric as the electrolyte matrix, separator and supporting layer was prepared via screen-printing and transfer-printing techniques. Digital photographs and scanning electron micrographs were collected to verify the construction of the cotton fabric-sandwiched supercapacitor. The device possesses a gravimetric capacitance of 63.7 F g−1 at a current density of 1 A g−1. After 2000 charging/discharging cycles, a capacitance retention of 85% could be achieved. The as-prepared supercapacitor can tolerate 100 times of bending or twisting with the capacitance maintaining at 89.7 and 93.3% of the original level, respectively. By designing the screen-printing mask, a squirrel-patterned supercapacitor was manufactured, showing that the proposed approach could combine both functionality and aesthetics. To demonstrate its feasibility, three in-series connected supercapacitors were produced on a T-shirt to light up a red lamp. This work may provide a facile approach to fabricating ultraflexible textile-based supercapacitors for potential applications in smart textiles and wearable electronics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allison L, Hoxie S, Andrew TL (2017) Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications. Chem Commun 53:7182–7193

    Article  CAS  Google Scholar 

  • Anothumakkool B, Torris ATA, Bhange SN, Unni SM, Badiger MV, Kurungot S (2013) Design of a high performance thin all-solid-state supercapacitor mimicking the active interface of its liquid-state counterpart. ACS Appl Mater Interfaces 5:13397–13404

    Article  CAS  PubMed  Google Scholar 

  • Bae H, Jang BC, Park H, Jung SH, Lee HM, Park JY, Jeon SB, Son G, Tcho IW, Yu K, Im SG, Choi SY, Choi YK (2017) Functional circuitry on commercial fabric via textile-compatible nanoscale film coating process for fibertronics. Nano Lett 17:6443–6452

    Article  CAS  PubMed  Google Scholar 

  • Bao R, Wang C, Dong L, Yu R, Zhao K, Wang ZL, Pan C (2015) Flexible and controllable piezo-phototronic pressure mapping sensor matrix by ZnO NW/p-polymer LED array. Adv Funct Mater 25:2884–2891

    Article  CAS  Google Scholar 

  • Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci 7:867–884

    Article  CAS  Google Scholar 

  • Ervin MH, Le LT, Lee WY (2014) Inkjet-printed flexible graphene-based supercapacitor. Electrochim Acta 147:610–616

    Article  CAS  Google Scholar 

  • Feng J, Ye S, Lu X, Tong Y, Li G (2015) Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni(OH)2 positive electrode: a novel and high-performance flexible electrochemical energy storage device. ACS Appl Mater Interfaces 7:11444–11451

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien D-H, Brooks GA, Davis RW, Javey A (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulzar U, Goriparti S, Miele E, Li T, Maidecchi G, Toma A, Angelis FD, Capiglia C, Zaccaria RP (2016) Next-generation textiles: from embedded supercapacitors to lithium ion batteries. J Mater Chem A 4:16771–16800

    Article  CAS  Google Scholar 

  • Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Tao J, Meng W, Zhu M, Huang Y, Fu Y, Gao Y, Zhi C (2015) Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11:518–525

    Article  CAS  Google Scholar 

  • Huang S, Chen P, Lin W, Lyu S, Chen G, Yin X, Chen W (2016) Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. RSC Adv 6:13359–13364

    Article  CAS  Google Scholar 

  • Laforgue A (2011) All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers. J Power Sources 196:559–564

    Article  CAS  Google Scholar 

  • Lee S-Y, Choi K-H, Choi W-S, Kwon YH, Jung H-R, Shin H-C, Kim JY (2013) Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ Sci 6:2414–2423

    Article  CAS  Google Scholar 

  • Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T, Choi SH, Kim D-H (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11:566–572

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lou Z, Chen D, Jiang K, Han W, Shen G (2017a) Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small. https://doi.org/10.1002/smll.201702829

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Lou Z, Han W, Chen D, Jiang K, Shen G (2017b) Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv Mater Technol 2:1600282

    Article  CAS  Google Scholar 

  • Liu W, Yan X, Lang J, Peng C, Xue Q (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245–17253

    Article  CAS  Google Scholar 

  • Liu L, Niu Z, Chen J (2017a) Design and integration of flexible planar micro-supercapacitors. Nano Res 10:1524–1544

    Article  Google Scholar 

  • Liu W, Song M-S, Kong B, Cui Y (2017b) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater 29:1603436

    Article  CAS  Google Scholar 

  • Lu Z, Mao C, Zhang H (2015) Highly conductive graphene-coated silk fabricated via a repeated coating-reduction approach. J Mater Chem C 3:4265–4268

    Article  CAS  Google Scholar 

  • Lu Z, Zhang H, Mao C, Li CM (2016) Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl Energy 164:57–63

    Article  CAS  Google Scholar 

  • Shi S, Xu C, Yang C, Chen Y, Liu J, Kang F (2013) Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property. Sci Rep 3:2598

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111:7527–7531

    Article  CAS  Google Scholar 

  • Sung J-H, Kim S-J, Jeong S-H, Kim E-H, Lee K-H (2006) Flexible micro-supercapacitors. J Power Sources 162:1467–1470

    Article  CAS  Google Scholar 

  • Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M, Wang K, Wu D, Zhu H (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater 24:4666–4670

    Article  CAS  Google Scholar 

  • Wang K, Zhang X, Li C, Sun X, Meng Q, Ma Y, Wei Z (2015) Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv Mater 27:7451–7457

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Lu X, Peng L, Xu K, Peng X, Huang J, Yu G, Xie Y (2013) Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat Commun 4:2431

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Yan F (2017) Flexible photodetectors based on novel functional materials. Small 13:1701822

    Article  CAS  Google Scholar 

  • Xu J, Wang Q, Wang X, Xiang Q, Liang B, Chen D, Shen G (2013) Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 7:5453–5462

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wang D, Yuan Y, Wei W, Gu S, Liu R, Wang X, Liu L, Xu W (2015) Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 22:1355–1363

    Article  CAS  Google Scholar 

  • Xu Q, Fan L, Yuan Y, Wei C, Bai Z, Xu J (2016) All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 23:3987–3997

    Article  CAS  Google Scholar 

  • Yang Y, Huang Q, Niu L, Wang D, Yan C, She Y, Zheng Z (2017) Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater 29:1606679

    Article  CAS  Google Scholar 

  • Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy AL, Yu J, Vajtai R, Ajayan PM (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427

    Article  CAS  PubMed  Google Scholar 

  • Yue B, Wang C, Ding X, Wallace GG (2012) Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim Acta 68:18–24

    Article  CAS  Google Scholar 

  • Yun TG, Hwang B, Kim D, Hyun S, Han SM (2015) Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl Mater Interfaces 7:9228–9234

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Qiao Y, Lu Z (2016) Fully printed ultraflexible supercapacitor supported by a single-textile substrate. ACS Appl Mater Interfaces 8:32317–32323

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Ma H, Huang S, Zhang X, Xia M, Tang Y, Ma Z (2016) Monolayer nickel cobalt hydroxyl carbonate for high performance all-solid-state asymmetric supercapacitors. ACS Appl Mater Interfaces 8:22997–23005

    Article  CAS  PubMed  Google Scholar 

  • Zhi M, Yang F, Meng F, Li M, Manivannan A, Wu N (2014) Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires. ACS Sustain Chem Eng 2:1592–1598

    Article  CAS  Google Scholar 

  • Zhong J, Fan L, Wu X, Wu J, Liu G, Lin J, Huang M, Wei Y (2015) Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes. Electrochim Acta 166:150–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Ming Li or Zhisong Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8758 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Zhang, H., Qiao, Y. et al. A flexible sandwich-structured supercapacitor with poly(vinyl alcohol)/H3PO4-soaked cotton fabric as solid electrolyte, separator and supporting layer. Cellulose 25, 3459–3469 (2018). https://doi.org/10.1007/s10570-018-1786-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1786-3

Keywords

Navigation