Skip to main content
Log in

Cellulose-chitosan beads crosslinked by dialdehyde cellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Crosslinked cellulose-chitosan beads were obtained via dissolution-regeneration of cellulose and chitosan by a LiOH/urea aqueous solution, followed by the crosslinking of chitosan via dialdehyde cellulose (DAC). This crosslinking reaction involved the Schiff base formation between the aldehyde groups of DAC and the amino groups of chitosan and subsequent reduction. DAC was prepared through periodate oxidation of cellulose and solubilization in hot water at 100 °C for 1 h. Four grades of DAC-crosslinked cellulose-chitosan were prepared by controlling the amount of cellulose and chitosan. The DAC-crosslinked cellulose-chitosan showed higher stability in the pH range of 2–9 over a long-term 21-day test. Additionally, the DAC-crosslinked chitosan showed a higher bovine serum albumin adsorption capacity as a result of the increased amino group content due to the crosslinking between DAC and chitosan, which occurred at multiple points in spite of a lower degree in crosslinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeida EVR, Frollini E, Castellan A, Coma V (2010) Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution. Carbohydr Polym 80:655–664

    Article  CAS  Google Scholar 

  • Chen AH, Liu SC, Chen CY, Chen CY (2008) Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J Hazard Mater 154:184–191

    Article  CAS  Google Scholar 

  • Chiou MS, Li HY (2002) Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J Hazard Mater 93:233–248

    Article  CAS  Google Scholar 

  • Denkbas EB, Odabasi M, Kilicay E, Özdemir N (2002) Human serum albumin (HSA) adsorption with chitosan. J Appl Polym Sci 86:3035–3039

    Article  Google Scholar 

  • Gu Z, Xie HX, Huang C, Li L, Yu X (2013) Preparation of chitosan/silk fibroin blending membrane fixed with alginate dialdehyde for wound dressing. Int J Biol Macromol 58:121–126

    Article  CAS  Google Scholar 

  • Hoven VP, Tangpasuthadol V, Angkitpaiboon Y, Vallapa N, Kiatkamjornwong S (2007) Surface-charged chitosan preparation and protein adsorption. Carbohydr Polym 68:44–53

    Article  CAS  Google Scholar 

  • Isobe N, Chen X, Kim UJ, Kimura S, Wada M, Saito T, Isogai A (2013) TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J Hazard Mater 260:195–201

    Article  CAS  Google Scholar 

  • Karnchanajindanun J, Srisa-ard M, Baimark Y (2011) Genipin-cross-linked chitosan microspheres prepared by a water-in-oil emulsion solvent diffusion method for protein delivery. Carbohydr Polym 85:674–680

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S (2001a) Ion-exchange chromatography by dicarboxyl cellulose gel. J Chromatogr A 919:29–37

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S (2001b) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369:79–85

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S (2002) Ion-exchange separation of proteins by polyallylamine-grafted cellulose gel. J Chromatogr A 955:191–196

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromol 1:488–492

    Article  CAS  Google Scholar 

  • Kim UJ, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 5:7–10

    Article  Google Scholar 

  • Kim UJ, Lee YR, Kang TH, Choi JW, Kimura S, Wada M (2017) Protein adsorption of dialdehyde cellulose-crosslinked chitosan withhigh amino group contents. Carbohydr Polym 163:34–42

    Article  CAS  Google Scholar 

  • Kimura S, Iosbe N, Wada M, Kuga S, Ko JH, Kim UJ (2011) Enzymatic hydrolysis of chitosan-dialdehyde cellulose hydrogels. Carbohydr Polym 83:1850–1853

    Article  CAS  Google Scholar 

  • Klein MP, Nunes MR, Rodrigues RC, Benvenutti EV, Costa TMH, Hertz PF, Ninow JL (2012) Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromol 13:2456–2464

    Article  CAS  Google Scholar 

  • Li N, Bai R (2005) Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42:237–247

    Article  CAS  Google Scholar 

  • Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    Article  CAS  Google Scholar 

  • Li Y, Xu C, Qiu T, Xu X (2015) Crosslinked electro-spun chitosan nanofiber mats with Cd(II) as template ions for adsorption applications. J Nanosci Nanotechnol 15:4245–4254

    Article  CAS  Google Scholar 

  • Liu Z, Wang H, Li B, Liu C, Jiang Y, Yua G, Mu X (2012) Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J Mater Chem 22:15085–15091

    Article  CAS  Google Scholar 

  • Liu G, Zhang L, Mao S, Rohani S, Ching C, Lu J (2015) Zwitterionic chitosan-silica-PVA hybrid ultrafiltration membranes for protein separation. Sep Purif Technol 152:55–63

    Article  CAS  Google Scholar 

  • Mansur HS, Costa-Júnior ES, Mansur AAP, Barbosa-Stancioli EF (2009) Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mater Sci Eng C-Mater 29:1574–1583

    Article  CAS  Google Scholar 

  • Mansur HS, Mansur AP, Curti E, De Almeida MV (2013) Functionalized-chitosan/quantum dot nano-hybrids for nanomedicine applications: towards biolabeling and biosorbing phosphate metabolites. J Mater Chem B 1:1696–1711

    Article  CAS  Google Scholar 

  • Mondal S, Li C, Wang K (2015) Bovine serum albumin adsorption on glutaraldehyde crosslinked chitosan hydrogels. J Chem Eng Data 60:2356–2362

    Article  CAS  Google Scholar 

  • Monteiro OAC, Airoldi C (1999) Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol 26:119–128

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77:1–9

    Article  CAS  Google Scholar 

  • Naito PK, Ogawa Y, Kimura S, Iwata T, Wada M (2015) Crystal transition from hydrated chitosan and chitosan/monocarboxylic acid complex to anhydrous chitosan investigated by X-ray diffraction. J Polym Sci Polym Phys 53:1065–1069

    Article  CAS  Google Scholar 

  • Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62:97–103

    Article  CAS  Google Scholar 

  • Pereda M, Ponce AG, Marcovich NE, Ruseckaite RA, Martucci JF (2011) Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll 25:1372–1381

    Article  CAS  Google Scholar 

  • Prata AS, Grosso CRF (2015) Production of microparticles with gelatin and chitosan. Carbohydr Polym 116:292–299

    Article  CAS  Google Scholar 

  • Shih CM, Shieh YT, Twu YK (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78:169–174

    Article  CAS  Google Scholar 

  • Stefanescu C, Daly WH, Negulescu II (2012) Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydr Polym 87:435–443

    Article  CAS  Google Scholar 

  • Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130

    Article  CAS  Google Scholar 

  • Wan Ngah WS, Ab Ghani S, Kamari A (2005) Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresour Technol 96:443–450

    Article  CAS  Google Scholar 

  • Wu YB, Ye SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC (2004) Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym 57:435–440

    Article  CAS  Google Scholar 

  • Yang J, Duan J, Zhang L, Lindman B, Edlund H, Norgren M (2016) Spherical nanocomposite particles prepared mixed cellulose-chitosan solutions. Cellulose 23:3105–3115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1D1A1A01058918).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ung-Jin Kim or Masahisa Wada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, UJ., Kim, H.J., Choi, J.W. et al. Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 24, 5517–5528 (2017). https://doi.org/10.1007/s10570-017-1528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1528-y

Keywords

Navigation