Skip to main content
Log in

Comparison of biodegradable substrates for printed organic electronic devices

Cellulose Aims and scope Submit manuscript

Abstract

Building on the results of the green chemistry movement, the development of biodegradable strain sensors and OLEDs, produced from sustainable materials and solvents, is presented. The choice of solvents and substrate is discussed in the context of terms relevant to printing, namely solvent solubility parameters, surface wetting envelopes and surface roughness. A new method for producing biodegradable and flat substrates from a common and commercially available cellulose diacetate foil is presented. Challenges associated with working with biodegradable foils are presented and different techniques are discussed to ultimately overcome these challenges and produce functional devices. Lastly, many green solvents and several commercially available biodegradable foils are compared for consideration in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun (Camb) 47:10182–10188

    Article  CAS  Google Scholar 

  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications—SI. Science (80-.) 339:535–539

  • Facchetti A (2007) Semiconductors for organic transistors. Mater Today 10:28–37

    Article  CAS  Google Scholar 

  • Fukaya Y, Iizuka Y, Sekikawa K, Ohno H (2007) Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem 9:1155–1157

    Article  CAS  Google Scholar 

  • Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids—Part II. Effect of the anion and toxicology. Green Chem 7:9–14

    Article  CAS  Google Scholar 

  • Hansen LF, Jensen LK, Jacobsen JP (1996) Bis-intercalation of a homodimeric thiazole orange dye in DNA in symmetrical pyrimidine-pyrimidine-purine-purine oligonucleotides. Nucleic Acids Res 24:859–867

    Article  CAS  Google Scholar 

  • Henderson RK et al (2011) Expanding GSK’s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem 13:854

    Article  CAS  Google Scholar 

  • Hernández-López S, Vigueras-Santiago E, Mendoza Mora M, Farias Mancilla JR, Zaragoza Contreras EA (2013) Cellulose-based polymer composite with carbon black for tetrahydrofuran sensing. Int J Polym Sci 2013:381653. doi:10.1155/2013/381653

    Article  Google Scholar 

  • Ihalainen P et al (2012) Influence of surface properties of coated papers on printed electronics. Ind Eng Chem Res 51:6025–6036

    Article  CAS  Google Scholar 

  • Irimia-Vladu M et al (2010) Biocompatible and biodegradable materials for organic field-effect transistors. Adv Funct Mater 20:4069–4076

    Article  CAS  Google Scholar 

  • Irimia-Vladu M, Głowacki ED, Voss G, Bauer S, Sariciftci NS (2012a) Green and biodegradable electronics. Mater Today 15:340–346

    Article  CAS  Google Scholar 

  • Irimia-Vladu M et al (2012b) Indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv Mater 24:375–380

    Article  CAS  Google Scholar 

  • Irimia-Vladu M et al (2013) Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors. Green Chem 15:1473

    Article  CAS  Google Scholar 

  • Jessop PG (2011) Searching for green solvents. Green Chem 13:1391

    Article  CAS  Google Scholar 

  • Khan MA, Bhansali US, Alshareef HN (2012) High-performance non-volatile organic ferroelectric memory on banknotes. Adv Mater 24:2165–2170

    Article  CAS  Google Scholar 

  • Krebs FC, Tromholt T, Jørgensen M (2010) Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2:873–886

    Article  CAS  Google Scholar 

  • Legnani C et al (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Sol Films 517:1016–1020

    Article  CAS  Google Scholar 

  • Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA (2012) A simple, low-cost conductive composite material for 3d printing of electronic sensors. PLoS ONE 7:e49365

    Article  CAS  Google Scholar 

  • Lu N, Lu C, Yang S, Rogers J (2012) Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv Funct Mater 22:4044–4050

    Article  CAS  Google Scholar 

  • Mitsubishi. Hostaphan ® GN Datasheet. (2014)

  • Narayan MR (2012) Review: dye sensitized solar cells based on natural photosensitizers. Renew Sustain Energy Rev 16:208–215

    CAS  Google Scholar 

  • Peng B, Chan PKL (2014) Flexible organic transistors on standard printing paper and memory properties induced by floated gate electrode. Org Electron Phys Mater Appl 15:203–210

    CAS  Google Scholar 

  • Petkovic M et al (2010) Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability. Green Chem 12:643

    Article  CAS  Google Scholar 

  • Sekitani T, Zschieschang U, Klauk H, Someya T (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9:1015–1022

    Article  CAS  Google Scholar 

  • Tao H et al (2010) Metamaterial silk composites at terahertz frequencies. Adv Mater 22:3527–3531

    Article  CAS  Google Scholar 

  • Yu L et al (2012) Green dielectric materials composed of natural graphite minerals and biodegradable polymer. RSC Adv 2:8793

    Article  CAS  Google Scholar 

  • Zhou H, Wu L, Gao Y, Ma T (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol A Chem 219:188–194

    Article  CAS  Google Scholar 

  • Zhu H et al (2016) Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10:1369–1377

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors acknowledge financial support from the German Ministry of Education and Research (BMBF) under grant 03X5526.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Morfa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morfa, A.J., Rödlmeier, T., Jürgensen, N. et al. Comparison of biodegradable substrates for printed organic electronic devices. Cellulose 23, 3809–3817 (2016). https://doi.org/10.1007/s10570-016-1049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1049-0

Keywords

Navigation