Skip to main content
Log in

Soy protein isolate/cellulose nanofiber complex gels as fat substitutes: rheological and textural properties and extent of cream imitation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The desire for good health has been a major impetus to drive the development of protein-polysaccharide complexes as fat substitutes. In the present study, complex gels were developed using two widely abundant renewable resources, soy protein isolate (SPI) and cellulose nanofiber (CNF). The aim was to assess the effects of incorporating CNF into SPI on the rheological and textural properties of the resultant mixture, and its potential application as an imitation of cream. Four mixtures with different SPI:CNF ratios (20:1, 15:1, 10:1, and 7:1 w/w) but at the constant total solid content 8 % were formulated. The SPI–CNF mixtures with a higher CNF proportion showed higher viscosity, storage modulus, and loss modulus, and an easier gelation characteristic. The most similar textural properties between the SPI–CNF (7:1) mixture and cream were observed. When 10, 20, or 30 % of this mixture was added into ice cream to replace an equivalent amount of cream, the targeted low fat, low calorie, anti-melting, and textural properties were achieved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Article  CAS  Google Scholar 

  • Arboleda JC, Hughes M, Lucia LA, Laine J, Ekman K, Rojas OJ (2013) Soy protein–nanocellulose composite aerogels. Cellulose 20(5):2417–2426

    Article  CAS  Google Scholar 

  • Cengiz E, Gokoglu N (2005) Changes in energy and cholesterol contents of frankfurter-type sausages with fat reduction and fat replacer addition. Food Chem 91(3):443–447

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811

    Article  CAS  Google Scholar 

  • Chen P, Yu H, Liu Y, Chen W, Wang X, Ouyang M (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20(1):149–157

    Article  CAS  Google Scholar 

  • Chen W, Li Q, Wang Y, Yi X, Zeng J, Yu H, Liu Y, Li J (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7(1):154–161

    Article  CAS  Google Scholar 

  • Chen W, Li Q, Cao J, Liu Y, Li J, Zhang J, Luo S, Yu H (2015) Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation. Carbohydr Polym 117:950–956

    Article  CAS  Google Scholar 

  • Cho SY, Lee SY, Rhee C (2010) Edible oxygen barrier bilayer film pouches from corn zein and soy protein isolate for olive oil packaging. LWT-Food Sci Technol 43(8):1234–1239

    Article  CAS  Google Scholar 

  • Corredig M, Sharafbafi N, Kristo E (2011) Polysaccharide-protein interactions in dairy matrices, control and design of structures. Food Hydrocoll 25(8):1833–1841

    Article  CAS  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomatrial. Mater Today 6(16):220–227

    Article  Google Scholar 

  • Gibis M, Schuh V, Weiss J (2015) Effects of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) as fat replacers on the microstructure and sensory characteristics of fried beef patties. Food Hydrocoll 45:236–246

    Article  CAS  Google Scholar 

  • Grinberg VY, Tolstoguzov VB (1997) Thermodynamic incompatibility of proteins and polysaccharides in solutions. Food Hydrocoll 11(2):145–158

    Article  CAS  Google Scholar 

  • Guerrero P, Stefani PM, Ruseckaite RA, De la Caba K (2011) Functional properties of films based on soy protein isolate and gelatin processed by compression molding. J Food Eng 105(1):65–72

    Article  CAS  Google Scholar 

  • Hua Y, Cui SW, Wang Q (2003) Gelling property of soy protein–gum mixtures. Food Hydrocoll 17(6):889–894

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature–based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Li JY, Yeh AI, Fan KL (2007) Gelation characteristics and morphology of corn starch/soy protein concentrate composites during heating. J Food Eng 78(4):1240–1247

    Article  CAS  Google Scholar 

  • Mehta N, Ahlawat SS, Sharma DP, Dabur RS (2013) Novel trends in development of dietary fiber rich meat products–a critical review. J Food Sci Technol 52(2):633–647

    Article  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  • Nagano T, Mori H, Nishinari K (1994) Effect of heating and cooling on the gelation kinetics of 75 globulin from soybeans. J Agr Food Chem 42(7):1415–1419

    Article  CAS  Google Scholar 

  • Nishinari K, Fang Y, Guo S, Phillips GO (2014) Soy proteins: a review on composition, aggregation and emulsification. Food Hydrocoll 39:301–318

    Article  CAS  Google Scholar 

  • Ou S, Wang Y, Tang S, Huang C, Jackson MG (2005) Role of ferulic acid in preparing edible films from soy protein isolate. J Food Eng 70(2):205–210

    Article  Google Scholar 

  • Pan H, Xu X, Tian Y, Jiao A, Jiang B, Chen J, Jin Z (2015) Impact of phase separation of soy protein isolate/sodium alginate co-blending mixtures on gelation dynamics and gels properties. Carbohydr Polym 125:169–179

    Article  CAS  Google Scholar 

  • Perez-Gago MB, Serra M, Alonso M, Mateos M, del Río MA (2005) Effect of whey protein- and hydroxypropyl methylcellulose-based edible composite coatings on color change of fresh-cut apples. Postharvest Biol Technol 36(1):77–85

    Article  CAS  Google Scholar 

  • Reddy N, Yang Y (2011) Potential of plant proteins for medical applications. Trend Biotechnol 29(10):490–498

    Article  CAS  Google Scholar 

  • Schmitt C, Turgeon SL (2011) Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interfac 167(1–2):63–70

    Article  CAS  Google Scholar 

  • Scholten E, Moschakis T, Biliaderis CG (2014) Biopolymer composites for engineering food structures to control product functionality. Food Struct 1(1):39–54

    Article  Google Scholar 

  • Song F, Zhang LM (2008) Enzyme-catalyzed formation and structure characteristics of a protein-based hydrogel. J Phys Chem B 112(44):13749–13755

    Article  CAS  Google Scholar 

  • Song F, Tang DL, Wang XL, Wang YZ (2011) Biodegradable soy protein isolate-based materials: a review. Biomacromolecules 12(10):3369–3380

    Article  CAS  Google Scholar 

  • Su JF, Huang Z, Yuan XY, Wang XY, Li M (2010) Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr Polym 79(1):145–153

    Article  CAS  Google Scholar 

  • Tolstoguzov VB (1991) Functional properties of food proteins and role of protein-polysaccharide interaction. Food Hydrocoll 4(6):429–468

    Article  CAS  Google Scholar 

  • Totosaus A, Montejano JG, Salazar JA, Guerrero I (2002) A review of physical and chemical protein-gel induction. Int J Food Sci Technol 37(6):589–601

    Article  CAS  Google Scholar 

  • Wagner J, Gueguen J (1999) Surface functional properties of native, acid-treated, and reduced soy glycinin. 2. Emulsifying properties. J Agric Food Chem 47(6):2181–2187

    Article  CAS  Google Scholar 

  • Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6(7):524–531

    Article  CAS  Google Scholar 

  • Wang Y, Li D, Wang LJ, Adhikari B (2011) The effect of addition of flaxseed gum on the emulsion properties of soybean protein isolate (SPI). J Food Eng 104(1):56–62

    Article  CAS  Google Scholar 

  • Wang Z, Sun X, Lian Z, Wang X, Zhou J, Ma Z (2013) The effects of ultrasonic/microwave assisted treatment on the properties of soy protein isolate/microcrystalline wheat-bran cellulose film. J Food Eng 114(2):183–191

    Article  CAS  Google Scholar 

  • Wu RL, Wang XL, Wang YZ, Bian XC, Li F (2009) Cellulose/soy protein isolate blend films prepared via room-temperature ionic liquid. Ind Eng Chem Res 48(15):7132–7136

    Article  CAS  Google Scholar 

  • Xiao Z, Li Y, Wu X, Qi G, Li N, Zhang K, Wang D, Sun XS (2013) Utilization of sorghum lignin to improve adhesion strength of soy protein adhesives on wood veneer. Ind Crop Prod 50:501–509

    Article  CAS  Google Scholar 

  • Xu X, Jiang L, Zhou Z, Wu X, Wang Y (2012) Preparation and properties of electrospun soy protein isolate/polyethylene oxide nanofiber membranes. ACS Appl Mater Inter 4(8):4331–4337

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Postdoctoral Science-Research Developmental Foundation of Heilongjiang Province of China (LBH-Q12162), and the National Natural Science Foundation of China (No. 31270590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haipeng Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3915 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Chen, W., Liu, Y. et al. Soy protein isolate/cellulose nanofiber complex gels as fat substitutes: rheological and textural properties and extent of cream imitation. Cellulose 22, 2619–2627 (2015). https://doi.org/10.1007/s10570-015-0681-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0681-4

Keywords

Navigation