Skip to main content
Log in

Superhydrophobic surfaces from surface-hydrophobized cellulose fibers with stearoyl groups

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this report, surface-hydrophobized cellulose fibers by stearoyl groups were used for the construction of superhydrophobic surfaces. The product after the synthesis contains two components: cellulose microfibers as the major component and nanoscaled segments in small amounts. The crystalline structure of cellulose was maintained after surface modification based on solid-state 13C NMR spectroscopy. Superhydrophobic surfaces showing static water contact angles of >150° were fabricated using freshly prepared products containing both components via the facile route, e.g., solvent casting. The cellulose types, microcrystalline cellulose or cotton linter cellulose fibers, did not significantly affect the chemical modification of cellulose fibers, but the superhydrophobic surfaces using surface-hydrophobized cotton linters as starting materials exhibited higher surface hydrophobicity and better impact stability in comparison to shorter microcrystalline cellulose. Due to the presence of a crystalline cellulose skeleton, the obtained superhydrophobic surfaces are stable during the heat treatment at 80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285. doi:10.1126/science.223.4633.283

    Article  CAS  Google Scholar 

  • Azimi G, Dhiman R, Kwon HM, Paxson AT, Varanasi KK (2013) Hydrophobicity of rare-earth oxide ceramics. Nat Mater 12(4):315–320. doi:10.1038/nmat3545

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8. doi:10.1007/s004250050096

    Article  CAS  Google Scholar 

  • Bayer IS, Fragouli D, Attanasio A, Sorce B, Bertoni G, Brescia R, Di Corato R, Pellegrino T, Kalyva M, Sabella S, Pompa PP, Cingolani R, Athanassiou A (2011) Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl Mater Inter 3(10):4024–4031. doi:10.1021/am200891f

    Article  CAS  Google Scholar 

  • Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10(8):2144–2151. doi:10.1021/bm900319k

    Article  CAS  Google Scholar 

  • Caschera D, Mezzi A, Cerri L, Caro T, Riccucci C, Ingo GM, Padeletti G, Biasiucci M, Gigli G, Cortese B (2013) Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics. Cellulose 21(1):741–756. doi:10.1007/s10570-013-0123-0

    Article  Google Scholar 

  • Chen LQ, Xiao ZY, Chan PCH, Lee YK (2010) Static and dynamic characterization of robust superhydrophobic surfaces built from nano-flowers on silicon micro-post arrays. J Micromech Microeng 20(10). doi:10.1088/0960-1317/20/10/105001

  • Chen L, Xiao Z, Chan PCH, Lee Y-K, Li Z (2011) A comparative study of droplet impact dynamics on a dual-scaled superhydrophobic surface and lotus leaf. Appl Surf Sci 257(21):8857–8863. doi:10.1016/j.apsusc.2011.04.094

    Article  CAS  Google Scholar 

  • Clift MJ, Foster EJ, Vanhecke D, Studer D, Wick P, Gehr P, Rothen-Rutishauser B, Weder C (2011) Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules 12(10):3666–3673. doi:10.1021/bm200865j

    Article  CAS  Google Scholar 

  • Cunha AG, Freire CS, Silvestre AJ, Pascoal Neto C, Gandini A, Orblin E, Fardim P (2007) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Biomacromolecules 8(4):1347–1352. doi:10.1021/bm0700136

    Article  CAS  Google Scholar 

  • Deng T, Varanasi KK, Hsu M, Bhate N, Keimel C, Stein J, Blohm M (2009) Nonwetting of impinging droplets on textured surfaces. Appl Phys Lett 94(13). doi:10.1063/1.3110054

  • Deng X, Mammen L, Butt HJ, Vollmer D (2012) Candle soot as a template for a transparent robust superamphiphobic coating. Science 335(6064):67–70. doi:10.1126/science.1207115

    Article  CAS  Google Scholar 

  • Dorrer C, Rühe J (2008) Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces. Adv Mater 20(1):159–163. doi:10.1002/adma.200701140

    Article  CAS  Google Scholar 

  • Dorrer C, Rühe J (2009) Some thoughts on superhydrophobic wetting. Soft Matter 5(1):51. doi:10.1039/b811945g

    Article  CAS  Google Scholar 

  • Erbil HY, Demirel AL, Avci Y, Mert O (2003) Transformation of a simple plastic into a superhydrophobic surface. Science 299(5611):1377–1380. doi:10.1126/science.1078365

    Article  CAS  Google Scholar 

  • Feng XJ, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18(23):3063–3078. doi:10.1002/adma.200501961

    Article  CAS  Google Scholar 

  • Feng L, Li SH, Li YS, Li HJ, Zhang LJ, Zhai J, Song YL, Liu BQ, Jiang L, Zhu DB (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860. doi:10.1002/adma.200290020

    Article  CAS  Google Scholar 

  • Gao X, Jiang L (2004) Biophysics: water-repellent legs of water striders. Nature 432(7013):36. doi:10.1038/432036a

    Article  CAS  Google Scholar 

  • Geissler A, Biesalski M, Heinze T, Zhang K (2014) Formation of nanostructured cellulose stearoyl esters via nanoprecipitation. J Mater Chem A 2(4):1107. doi:10.1039/c3ta13937a

    Article  CAS  Google Scholar 

  • Genzer J, Efimenko K (2000) Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science 290(5499):2130–2133. doi:10.1126/science.290.5499.2130

    Article  CAS  Google Scholar 

  • Guo Z, Zhou F, Hao J, Liu W (2005) Stable biomimetic super-hydrophobic engineering materials. J Am Chem Soc 127(45):15670–15671. doi:10.1021/ja0547836

    Article  CAS  Google Scholar 

  • He M, Xu M, Zhang LN (2013) Controllable Stearic Acid Crystal Induced High Hydrophobicity on Cellulose Film Surface. ACS Appl Mater Inter 5(3):585–591. doi:10.1021/Am3026536

    Article  CAS  Google Scholar 

  • Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16(21):8210–8212. doi:10.1021/La9913957

    Article  CAS  Google Scholar 

  • Jin C, Jiang Y, Niu T, Huang J (2012) Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem 22(25):12562. doi:10.1039/c2jm31750h

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Koishi T, Yasuoka K, Fujikawa S, Ebisuzaki T, Zeng XC (2009) Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc Natl Acad Sci USA 106(21):8435–8440. doi:10.1073/pnas.0902027106

    Article  CAS  Google Scholar 

  • Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25

    Article  CAS  Google Scholar 

  • Lee KY, Blaker JJ, Murakami R, Heng JY, Bismarck A (2014) Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils. Langmuir 30(2):452–460. doi:10.1021/la4032514

    Article  CAS  Google Scholar 

  • Li S, Xie H, Zhang S, Wang X (2007) Facile transformation of hydrophilic cellulose into superhydrophobic cellulose. Chem Comm 46:4857. doi:10.1039/b712056g

    Article  Google Scholar 

  • Li G, Zheng H, Wang Y, Wang H, Dong Q, Bai R (2010) A facile strategy for the fabrication of highly stable superhydrophobic cotton fabric using amphiphilic fluorinated triblock azide copolymers. Polymer 51(9):1940–1946. doi:10.1016/j.polymer.2010.03.002

    Article  CAS  Google Scholar 

  • Malmström E, Carlmark A (2012) Controlled grafting of cellulose fibres—an outlook beyond paper and cardboard. Polym Chem 3(7):1702. doi:10.1039/c1py00445j

    Article  Google Scholar 

  • Nystrom D, Lindqvist J, Ostmark E, Hult A, Malmstrom E (2006) Superhydrophobic bio-fibre surfaces via tailored grafting architecture. Chem Commun 34:3594–3596. doi:10.1039/b607411a

    Article  Google Scholar 

  • Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16(4):641–647. doi:10.1007/s10570-009-9321-1

    Article  CAS  Google Scholar 

  • Reyssat M, Pepin A, Marty F, Chen Y, Quere D (2006) Bouncing transitions on microtextured materials. Europhys Lett 74(2):306–312. doi:10.1209/epl/i2005-10523-2

    Article  CAS  Google Scholar 

  • Roy D, Guthrie JT, Perrier S (2005) Graft Polymerization: grafting Poly(styrene) from cellulose via reversible addition—fragmentation chain transfer (RAFT) Polymerization. Macromolecules 38(25):10363–10372. doi:10.1021/ma0515026

    Article  CAS  Google Scholar 

  • Sealey JE, Samaranayake G, Todd JG, Glasser WG (1996) Novel cellulose derivatives. IV. Preparation and thermal analysis of waxy esters of cellulose. J Polym Sci Part B Polym Phys 34:1613–1620

    Article  CAS  Google Scholar 

  • Simončič B, Hadžić S, Vasiljević J, Černe L, Tomšič B, Jerman I, Orel B, Medved J (2013) Tailoring of multifunctional cellulose fibres with “lotus effect” and flame retardant properties. Cellulose 21(1):595–605. doi:10.1007/s10570-013-0103-4

    Google Scholar 

  • Song JL, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a Review. Nord Pulp Pap Res J 28(2):216–238

    Article  CAS  Google Scholar 

  • Teeäär R, Serimaa R, Paakkarl T (1987) Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polym Bull 17(3). doi:10.1007/bf00285355

  • Vaca-Garcia C, Borredon ME, Gaseta A (2001) Determination of the degree of substitution (DS) of mixed cellulose esters by elemental analysis. Cellulose 8(3):225–231. doi:10.1023/a:1013133921626

    Article  CAS  Google Scholar 

  • Vaca-Garcia C, Gozzelino G, Glasser WG, Borredon ME (2003) Dynamic mechanical thermal analysis transitions of partially and fully substituted chellulose fatty esters. J Polym Sci Part B Polym Phys 41:281–289

    Article  CAS  Google Scholar 

  • Vasiljević J, Gorjanc M, Tomšič B, Orel B, Jerman I, Mozetič M, Vesel A, Simončič B (2012) The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose 20(1):277–289. doi:10.1007/s10570-012-9812-3

    Article  Google Scholar 

  • Vuoti S, Talja R, Johansson L-S, Heikkinen H, Tammelin T (2013) Solvent impact on esterification and film formation ability of nanofibrillated cellulose. Cellulose 20(5):2359–2370. doi:10.1007/s10570-013-9983-6

    Article  CAS  Google Scholar 

  • Xu B, Cai Z (2008) Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl Surf Sci 254(18):5899–5904. doi:10.1016/j.apsusc.2008.03.160

    Article  CAS  Google Scholar 

  • Yu M, Gu G, Meng W-D, Qing F-L (2007) Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl Surf Sci 253(7):3669–3673. doi:10.1016/j.apsusc.2006.07.086

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Hessian excellence initiative LOEWE Research Cluster SOFT CONTROL for the financial support. We thank Prof. M. Biesalski for the kind support. Y.W. thanks the CSC (Chinese Scholarship Council) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, X., Heim, LO. et al. Superhydrophobic surfaces from surface-hydrophobized cellulose fibers with stearoyl groups. Cellulose 22, 289–299 (2015). https://doi.org/10.1007/s10570-014-0505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0505-y

Keywords

Navigation